

Accepted Manuscript / Manuscrito Aceptado

Tittle Paper/Título del artículo:

Frecuencia de parásitos gastrointestinales en perros de un albergue en el municipio de Jamapa, Veracruz

Frequency of gastrointestinal parasites in shelter dogs in the municipality of Jamapa, Veracruz

Authors/Autores: Reyes-Sandoval, R.M., Romero-Salas, D., Cruz-Romero, A., Alcalá-Canto, Y., Del Río-Araiza, V.H., Salguero-Alonso J.L., Ojeda-Robertos, N.F.

ID: e1753

DOI: https://doi.org/10.15741/revbio.13.e1753

Received/Fecha de recepción: August 26th 2024

Accepted /Fecha de aceptación: September 19th 2025

Available online/Fecha de publicación: October 13th 2025

Please cite this article as/Como citar este artículo: Reyes-Sandoval, R.M., Romero-Salas, D., Cruz-Romero, A., Alcalá-Canto, Y., Del Río-Araiza, V.H., Salguero-Alonso J.L., Ojeda-Robertos, N.F. (2025). Frequency of gastrointestinal parasites in shelter dogs in the municipality of Jamapa, Veracruz. *Revista Bio Ciencias*, 13, e1753. https://doi.org/10.15741/revbio.12.e1753

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Este archivo PDF es un manuscrito no editado que ha sido aceptado para publicación. Esto es parte de un servicio de Revista Bio Ciencias para proveer a los autores de una versión rápida del manuscrito. Sin embargo, el manuscrito ingresará a proceso de edición y corrección de estilo antes de publicar la versión final. Por favor note que la versión actual puede contener errores de forma.

Artículo original

Frecuencia de parásitos gastrointestinales en perros de un albergue en el municipio de Jamapa, Veracruz

Frequency of gastrointestinal parasites in shelter dogs in the municipality of Jamapa, Veracruz

Parasitosis gastrointestinales en perros del albergue de Jamapa, Veracruz/ Gastrointestinal parasitosis in dogs from the Jamapa shelter, Veracruz

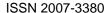
Reyes-Sandoval, R.M.¹ (0000-0001-6618-1922¹⁰), Romero-Salas, D. ^{1*} (0000-0003-4640-6316¹⁰), Cruz-Romero, A.² (10000-0003-4080-6722¹⁰), Alcalá-Canto, Y. ³ (0000-0001-7809-392X¹⁰), Del Río-Araiza, V.H. ³ (0000-0002-7868-6407¹⁰), Salguero-Alonso J.L. ¹ (0009-0003-0615-8976¹⁰), Ojeda-Robertos, N.F.⁴ (0000-0001-7454-6960¹⁰).

¹Laboratorio de Parasitología. Unidad de Diagnóstico, Rancho "Torreón del Molino", Facultad de Medicina Veterinaria y Zootecnia. Universidad Veracruzana. CP. 91697. Veracruz, México.

²Laboratorio de Enfermedades Infecciosas. Unidad de Diagnóstico, Rancho "Torreón del Molino", Facultad de Medicina Veterinaria y Zootecnia. Universidad Veracruzana. CP. 91697. Veracruz, México.

³Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad #3000, Colonia, C.U., Coyoacán, CP. 04510 Ciudad de México. México.

⁴División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México.


*Corresponding Author:

Dora Romero-Salas. Laboratorio de Parasitología, Unidad de Diagnóstico, Rancho Torreón del Molino, Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana. Carretera Federal 140 Veracruz-Xalapa, km 14.5, Tejería, Veracruz, México. CP: 91697. Teléfono: (229)9522561. E-mail: dromero@uv.mx

RESUMEN

Las parasitosis son un problema en Salud Pública, las mascotas actúan como reservorios y son una fuente de contaminación directa e indirecta, contaminan fuentes de agua, suelo y alimentos a través de sus heces. El objetivo fue determinar la frecuencia de parásitos gastrointestinales en heces de perros del albergue de Jamapa, Veracruz. Se analizaron las heces de 230 perros en un muestreo transversal por conveniencia que duró de marzo a julio del 2023. Las muestras se tomaron del recto de los animales y fueron analizadas en el laboratorio de Parasitología del rancho "Torreón del Molino", FMVZ de la Universidad Veracruzana. Las técnicas empleadas fueron: Mc Máster, Flotación y Faust modificada. En análisis se realizó usando el programa STATA ver 14.0; se determinó una frecuencia general de 98.7 %; de forma independiente las frecuencias fueron: *Trichuris* spp. 16 %; *Giardia* spp. 19.5 %; *Strongyloides* spp. 28.2 %; *Uncinaria* spp. 34.7 %; *Toxocara* spp. 57.3 % y *Ancylostoma* spp. 81.7 %. La frecuencia general fue similar para ambos sexos. Con respecto a la edad, todos los grupos presentaron frecuencia superior al 95 %.

Se determinó que existe una alta presencia de parasitosis gastrointestinales en este albergue, lo cual podría significar un riesgo para la Salud Pública.

PALABRAS CLAVE:

Bienestar animal, Desparasitante, Parásito, Transmisión, Zoonosis

Introducción

Las mascotas (perros y gatos) actúan como potenciales hospederos o reservorios de distintas parasitosis y son fuente constante de contaminación directa, principalmente para la población infantil con quienes interactúan de manera cercana, pero también contaminan de manera indirecta las fuentes de aqua, el suelo y los alimentos a través de huevos o fases infectantes presentes en sus heces (Sarmiento-Rubiano et al., 2018). Los perros y gatos que ingresan a refugios pueden portar parásitos gastrointestinales que representan riesgos graves para el personal del refugio, los visitantes y otros animales, además, estos lugares proporcionan un entorno que facilita la propagación de infecciones entre la población (Raza et al., 2018). En los perros y gatos las infecciones parasitarias tienen una distribución mundial, teniendo afecciones principalmente intestinales inespecíficas ya que sus cuadros clínicos pueden ser agudos, subagudos y crónicos (Caraballo et al., 2007), estas parasitosis conllevan a uno de los problemas sanitarios más comunes en los hospederos caninos provocándoles infecciones de moderadas a severas, representando además riesgo zoonótico (Quijada et al., 2008; Sierra-Cifuentes et al., 2014). Existen diversos reportes sobre la presencia de una amplia gama de parásitos gastrointestinales en las heces y suelos de lugares públicos, donde las personas los adquieren por consumo accidental de estadios larvarios, teniendo impacto en la salud pública (Morales et al., 2016). La infección fecal-oral inicia por contacto directo o indirecto con las etapas transmisivas (quistes); así como también de persona a persona o por alimentos y/o agua contaminados (Cacció et al., 2005). Los parásitos gastrointestinales en caninos son considerados como agentes causantes de enfermedades asociadas a cuadros clínicos con diarrea, deshidratación, emesis y en algunos otros casos con signología respiratoria, dentro de estos parásitos se encuentran los géneros Toxocara spp., Ancylostoma spp., Uncinaria sp., Trichuris sp., Strongyloides spp., Spirocerca sp., Giardia spp., Dipylidium sp., entre otros (Solarte-Paredes et al., 2013; Morales et al., 2016; Saari et al., 2019). Toxocara canis y Echinoccocus granulosus son trasmitidos por caninos e indican mayor importancia médica al ser de riesgo epidemiológico zoonótico, el primero es un nematodo causante de la enfermedad "Larva migrans visceral, cutánea u ocular" y el segundo es un cestodo que provoca hidatidosis en el ser humano (Caraballo et al., 2007; Sotiriadou et al., 2013; Dantas-Torres & Otranto, 2014; Iannacone et al., 2001). La giardiasis forma parte de las enfermedades infecciosas con un gran potencial y riesgo zoonótico, es causada por Giardia spp., estos parásitos forman guistes que se excretan con las heces y pueden sobrevivir largo tiempo en el ambiente, la transmisión fecal-oral da inicio con la ingestión de los quistes y es necesario ingerir al menos diez para causar infección experimental, dependiendo de la especie de Giardia y otros factores como el sistema inmunológico del hospedero, la giardiasis es generalmente consecuencia de un mal proceso de preparación de alimentos o higiene cuestionable; así como de la persistencia ambiental de los quistes en el hábitat y pelaje de los animales; lo cual incrementa el riesgo de transmisión en poblaciones susceptibles como los infantes (Cabrera & Molina, 2015; Godínez-Galaz et al., 2019; Naupay et al., 2019). Las zonas tropicales y subtropicales, con climas cálido-húmedo, actúan de manera favorable en el

desarrollo y supervivencia de los parásitos (Giraldo *et al.*, 2005). Por lo tanto, es importante identificar la presencia de parasitosis gastrointestinales en perros que se mantienen en ambientes con alta densidad de población, que a su vez permita a todos los involucrados en la salud animal, establecer las medidas pertinentes para la prevención y/o control de estas y de esta manera contribuir en la preservación de la Salud Pública. Por todo lo anterior, el objetivo de este trabajo fue determinar la frecuencia de parásitos gastrointestinales en las heces de los perros que conviven en el albergue de Jamapa, Veracruz, debido a que este aloja a la mayor población canina de los albergues de la zona centro del estado.

Material y Métodos

Tipo y lugar de estudio

Se realizó un estudio epidemiológico de tipo transversal cualitativo, empleando un muestreo por conveniencia que se llevó a cabo en un albergue ubicado en el municipio de Jamapa, Veracruz, México, con una duración de cinco meses (marzo a julio de 2023). El municipio de Jamapa se ubica en la zona central de estado de Veracruz, colindando con los municipios de Medellín, Manlio Fabio Altamirano y Cotaxtla. El clima predominante es cálido subhúmedo con lluvias en verano, la temperatura media es de entre 24 y 26 °C (INEGI, 2010).

Tamaño de muestra

El tamaño de muestra se determinó mediante el programa Win Episcope Ver. 2.0, para estimación de una proporción, de poblaciones infinitas. Para calcular una proporción máxima a 50 %, con un nivel de confianza de 95 % y un margen de error de 5 %, en una población de tamaño desconocido, lo que resultó un tamaño de muestra de 385 perros, sin embargo, la población del albergue solo llegó a 230 caninos.

Toma de muestra

Se tomó una muestra de heces directa del recto de cada animal de manera aséptica. Cada muestra se depositó en bolsa hermética identificada con el número y/o nombre del animal. Las muestras se trasportaron en refrigeración (4 °C) al Laboratorio de Parasitología de la Unidad de Diagnóstico del rancho "Torreón del Molino" de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Veracruzana, para su procesamiento.

Recolección de datos

Se aplicó una encuesta general y una individual, para determinar las variables de estudio en los perros como edad, sexo, diagnóstico previo de parasitosis, tratamiento, frecuencia de consulta, episodios de enfermedad y hábitos de limpieza.

Técnicas diagnósticas

Se utilizaron las técnicas coproparasitoscópicas siguiendo la metodología citada por Coles et al. (1992), McMaster, Flotación (solución de cloruro de sodio) y Faust modificada

La Tabla 2, muestra que 68/230 perros resultaron con presencia de Giardia spp., con una frecuencia de 19.5 % (CI95 % 13.7-25.9). De acuerdo con el sexo de los animales, la frecuencia presentó poca variación, las hembras con el 28.7 % (CI95 % 21.2-37.3) y los machos 30.6 % (CI95 % 21.6-40.7). Con relación a la edad, se observó que el grupo de animales de 6-12 meses presentaron la mayor frecuencia con el 60 % (CI95 % 47.5-71.5) y en el grupo de 37-48 meses fueron nulos los resultados con 0.0 % (IC95 % 0-23.1). En cuanto a la raza de los perros; los criollos presentaron una mayor presencia de Giardia spp. con un 32.3 % (CI95 % 23.2-42.4).

Tabla 2. Frecuencia de Giardia spp. en perros del albergue de Jamapa, Veracruz con relación al sexo, edad y raza, por la técnica de Faust.

Variable	"n"	Positivos	Frecuencia (%)	*CI95 %	X2	Р
Sexo						
Hembra	132	38	28.7	21.2-37.3	0.089	0.764
Macho	98	30	30.6	21.6-40.7		
Edad (meses)						
6-12	70	42	60.0	47.5-71.5	48.89	0
13-24	62	15	24.1	14.2-36.7		
25-36	65	9	13.8	6.5-24.6		
37-48	14	0	0.0	0-23.1		
>49	19	2	10.5	1.3-33.1		
Raza						
Pura	131	36	27.4	20.0-35.9	0.634	0.426
Criolla	99	32	32.3	23.2-42.4		
Total	230	68	19.5	13.7-25.9		

^{*95 %} CI (95 % Confidence Interval), X² (Chi square), p (<0.05)

La Tabla 3, señala que 65/230 perros resultaron con presencia de Strongyloides spp., con una frecuencia de 28.2 % (CI95 % 22.5-34.5). Con relación al sexo de los animales, la presencia en hembras y machos fue muy similar. En cuanto a la edad, el grupo de animales de 37-48 meses resultaron con la mayor presencia de 35.7 % (CI95 % 12.7-64.8). Respecto a la raza, los criollos y los de raza pura presentaron una prevalencia igual con un 28.2 % (CI95 % 20.7-36.7).

Tabla 3. Frecuencia de Strongyloides spp. en perros del albergue de Jamapa, Veracruz, con relación al sexo, edad y raza, por la técnica de Flotación con Cloruro de Sodio.

Variable	"n"	Positivos	Frecuencia (%)	*CI95 %	X ²	Р
Sexo						
Hebra	132	37	28.0	20.5-36.5	0.008	0.928
Macho	98	28	28.5	19.8-39.5		
Edad (meses)					, C	
6-12	70	12	17.1	9.1-28.0	6.242	0.182
13-24	62	21	33.8	22.3-47.0		
25-36	65	21	32.3	21.2-45.0		
37-48	14	5	35.7	12.7-64.8		
>49	19	6	31.5	12.5-56.5		
Raza						
Pura	131	37	28.2	20.7-36.7	0	0.995
Criolla	99	28	28.2	19.6-38.2		
Total	230	65	28.2	22.5-34.5		

^{*95 %} CI (95 % Confidence Interval), X2 (Chi square), p (<0.05)

La **Tabla 4**, muestra que 80/230 perros presentaron *Uncinaria* spp., con una frecuencia de 34.7 % (CI95 % 28.3-41.6). Con relación al sexo de los animales, la frecuencia fue distinta en hembras y machos con el 37.1% (CI95 % 28.8-45.9) y 31.6% (CI95 % 22.6-41.8) respectivamente. Respecto a la edad, se observó que el grupo de animales de 6-12 meses presentaron la mayor frecuencia con el 40 % (Cl95% 28.4-52.4. Los perros de raza pura fueron los que presentaron mayor presencia de Uncinaria spp. con el 35.1 % (CI95 % 26.9-43.9).

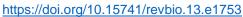


Tabla 4. Frecuencia de Uncinaria spp. en perros del albergue de Jamapa, Veracruz, con relación al sexo, edad y raza, por la técnica de Flotación con Cloruro de Sodio.

Variable	"n"	Positivos	Frecuencia (%)	*CI95%	X ²	Р
Sexo						
Hembra	132	49	37.1	28.8-45.9	0.746	0.387
Macho	98	31	31.6	22.6-41.8		
Edad (meses)					(5)	
6-12	70	28	40.0	28.4-52.4	3.424	0.49
13-24	62	24	38.7	26.6-51.9		
25-36	65	20	30.7	19.9-43.4		
37-48	14	3	21.4	4.6-50.7		
>49	19	5	26.3	9.1-51.2		
Raza						
Pura	131	46	35.1	26.9-43.9	0.014	0.903
Criolla	99	34	34.3	25.0-44.5		
Total	230	80	34.7	28.3-41.6		

^{*95 %} CI (95 % Confidence Interval), X2 (Chi square), p (<0.05)

En la Tabla 5, se muestra que 132/230 perros resultaron con presencia de Toxocara spp., con una prevalencia de 57.3 % (CI95 % 50.7-63.8). Con base al sexo de los animales, la prevalencia en hembras fue de 55.3 % (CI95 % 46.4-63.9) y en machos 60.2 % (CI95 % 49.8-69.9). Respecto a la edad, el grupo de animales de 37-48 meses obtuvieron la mayor prevalencia con un 78.5 % (CI95 % 49.2-95.3). En cuanto a la raza; los criollos presentaron una mayor presencia de *Toxocara* spp. con un 58.5 % (Cl95 % 48.2-68.3).

Tabla 5. Frecuencia de Toxocara spp. en perros del albergue de Jamapa, Veracruz, con relación al sexo, edad y raza, por la técnica de Flotación con Cloruro de Sodio.

Variable	"n"	Positivos	Frecuencia (%)	*CI95 %	X ²	Р
Sexo						
Hembra	132	73	55.3	46.4-63.9	0.552	0.457
Macho	98	59	60.2	49.8-69.9		
Edad (meses)					,C	
6-12	70	42	60.0	47.5-71.5	4.116	0.391
13-24	62	36	58.0	44.8-70.4		
25-36	65	33	50.7	38.0-63.3		
37-48	14	11	78.5	49.2-95.3		
>49	19	10	52.6	28.8-75.5		
Raza						
Pura	131	74	56.4	47.5-65.1	0.101	0.750
Criolla	99	58	58.5	48.2-68.3		
Total	230	132	57.3	50.7-63.8		

^{*95 %} CI (95 % Confidence Interval), X2 (Chi square), p (<0.05)

En la Tabla 6, se muestra que 188/230 perros resultaron con presencia de Ancylostoma spp., con una frecuencia de 81.7 % (CI95 % 76.1-86.5). De acuerdo con el sexo de los animales, la frecuencia fue similar para hembras y machos con el 81.8 % (CI95 % 74.1-87.9) y 81.6 % (CI95 % 72.5-88.7) respectivamente. Con relación a la edad, se observó que el grupo de animales de 6-12 meses presentaron la mayor frecuencia con el 90 % (CI95 % 80.4-95.8) y la menor se presentó en el grupo de 25-36 meses con 69.2 (CI95 % 56.5-80.0). Para la raza de los animales, los criollos presentaron mayor presencia de *Ancylostoma* spp con el 87.8 % (Cl95 % 79.7-93.5)

Tabla 6. Frecuencia de *Ancylostoma* spp. en perros del albergue de Jamapa, Veracruz con relación al sexo, edad y raza, por la técnica de Flotación con Cloruro Sodio.

Variable	"n"	Positivos	Frecuencia (%)	*CI95 %	X ²	Р
Sexo						
Hembra	132	108	81.8	74.1-87.9	0.001	0.971
Macho	98	80	81.6	72.5-88.7		
Edad (meses)						CAY
6-12	70	63	90	80.4-95.8	12.18	0.016
13-24	62	54	87	76.1-94.2		
25-36	65	45	69.2	56.5-80.0		
37-48	14	12	85.7	57.8-98.2		*
>49	19	14	73.6	48.7-90.8		
Raza						
Pura	131	101	77	68.9-83.9	4.389	0.036
Criolla	99	87	87.8	79.7-93.5		
Total	230	188	81.7	76.1-86.5		

^{*95 %} CI (95 % Confidence Interval), X2 (Chi square), p (<0.05)

La Tabla 7, incluye a todos los parásitos gastrointestinales analizados, representando que 227/230 perros resultaron positivos y con una frecuencia de 98.7 % (Cl95 % 97.2-100). En cuanto al sexo de los animales, las hembras obtuvieron una prevalencia de 98.4 % (Cl95 % 96.40-100) y los machos 98.98 % (Cl95 % 96.99-100). Con respecto a la edad, el grupo de 6-12 meses mostraron una mayor prevalencia con 97.1 % (Cl95 % 93.2-100). Con relación a la raza, los criollos presentaron una prevalencia de 98.9 % (Cl95 % 97.2-100).

Tabla 7. Frecuencia general de perros positivos *Giardia* spp., *Ancylostoma* spp., *Uncinaria* spp., *Trichuris* spp., *Toxocara* spp. y *Strongyloides* spp. del albergue de Jamapa, Veracruz, con relación al sexo, edad y raza.

Variable	"n"	Positivos	Frecuencia (%)	*CI95%	X ²	Р
Sexo						
Hembra	132	130	98.4	96.40-100	0.008	0.928
Macho	98	97	98.98	96.99-100		
Edad (meses)				4	15)
6-12	70	68	97.1	93.2-100	48.027	0
13-24	62	61	98.3	95.2-100		
25-36	65	65	100	100-100		
37-48	14	14	100	100-100		
>49	19	19	100	100-100		
Raza						
Pura	133	131	98.5	96.4-100	1.561	0.211
Criolla	97	96	98.9	96.9-100		
Total	230	227	98.7	97.2-100		

^{*95 %} CI (95 % Confidence Interval), X2 (Chi square), p (<0.05)

Las prevalencias descritas para los diferentes parásitos gastrointestinales aquí reportados varían considerablemente acorde distintos factores como la región estudiada, población muestreada, situación socioeconómica, técnicas diagnósticas utilizadas, estado de salud de los individuos considerados, entre otros. A continuación, se discuten los resultados en orden de aparición en las Tablas.

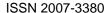
De acuerdo con un estudio similar al presente, realizado en la comunidad de Medellín, Veracruz, México, en el que también analizaron perros de refugio, obtuvieron cinco especies de endoparásitos, entre las cuales *T. vulpis* presentó prevalencia de 18.8 %; relacionando las parasitosis con factores como edad, raza, sexo y el contacto con gatos, ya que el 100 % de los perros que estuvieron en contacto con gatos dieron positivo a *T. vulpis* (Alvarado-Esquivel *et al.*, 2015); por otra parte, en el estado de Durango, México, se reportó un 4 % para *T. vulpis* en perros domiciliados y sin hogar, siendo este el único parásito con potencial zoonótico encontrado en animales con domicilio (Aguillón-Gutiérrez *et al.*, 2021). En otro estudio realizado en Armenia, Colombia; obtuvieron una prevalencia de 4.3 % en *T. vulpis* (Giraldo., *et al.*, 2005); por lo tanto, *T. vulpis* es uno de los parásitos más reportados en estudios similares, ya sea en animales con o sin hogar, cobrando relevancia su capacidad zoonótica.

Por otra parte, se menciona que *T. vulpis* puede ser subdiagnosticado debido al ciclo biológico, pudiendo estar migrando en el momento del muestreo, otra razón sería la técnica

diagnóstica utilizada, razón por la cual algunos autores recomiendan el uso de técnicas de concentración por centrifugación (Traversa, 2011)

En otro sentido, la giardiasis es una de las principales infecciones gastrointestinales que impactan la salud pública mundial, esta enfermedad está relacionada principalmente con pobres hábitos de higiene e interacción con animales infectados; en América Latina, África y Asia cerca de 200 millones de personas sufren esta enfermedad y surgen aproximadamente 500 000 nuevos casos reportados cada año (Godínez-Galaz *et al.*, 2019; Tarqui-Terrones *et al.*, 2019).

Una investigación realizada por Vasilopulos (2007) reportó una prevalencia general de giardiasis que varía entre 5 y 15 %, inferior a la encontrada en este estudio. Sin embargo, no debemos perder de vista que los animales aquí analizados pertenecen a un albergue con sobrepoblación y sin un plan de medicina preventiva bien establecido, lo que puede explicar la superior frecuencia en el albergue de Jamapa, Veracruz.


En China, un metaanálisis mostró una prevalencia general de *Giardia* spp. del 11 %, con diferencias dependiendo de la región geográfica y del año en cuestión; sumado a esto, una significativa variabilidad en los resultados acordes a las técnicas utilizadas (Zhao *et al.*, 2022). Por otra parte, se ha demostrado que los perros son una importante ruta de diseminación de *Giardia* spp. para otros mamíferos y humanos a través de agua o incluso áreas de recreación, enfatizado desde hace años la gran necesidad de controlar la enfermedad en humanos y animales (Godínez-Galaz *et al.*, 2019).

Por otra parte, una de las especies más importantes del género *Strongyloides* es *S. stercolaris* por su potencial zoonótico, se dice que entre 100 y 370 millones de personas son afectadas por este parásito y la enfermedad que causa se considera desatendida; la strongyloidiasis es más común en caninos jóvenes, en los que puede generar diferente signología, la cual esta principalmente asociada al estado inmunológico y a padecimientos prexistentes, a nivel mundial en caninos se estableció una prevalencia del 6 % y del 2 % para Norteamérica, mostrando mayor presencia en animales de la calle y de albergues (Eslahi *et al.*, 2022).

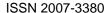
Un estudio realizado en Colombia donde el objetivo era hallar helmintos intestinales; se encontró que *Strongyloides* spp. tuvo un 4.0 % (Giraldo *et al.*, 2005). Más recientemente, en una provincia italiana, se analizaron 272 muestras de perros para detectar *S. stercolaris*, 6 animales resultaron positivos, uno de ellos fue domiciliado y los otros 5 pertenecientes a un albergue, saltando a la vista que el primero de estos fue adoptado tiempo atrás de un albergue (Paradies *et al.*, 2017). En el norte de México, recientemente, no se reportó la presencia de *Strongyloides* spp. en los perros analizados (Aguillón-Gutiérrez *et al.*, 2021). Es notorio que en los estudios realizados donde se menciona a *Strongyloides* spp. los animales de las calles o pertenecientes a refugios son los que presentan mayor presencia de estos parásitos.

De manera semejante, *U. stenocephala* se encuentra entre los principales helmintos que parasitan el sistema digestivo de los perros presentes en los refugios, en estos lugares, gracias a la elevada población, la presencia de heces y la falta de áreas pavimentadas, además de las condiciones de temperatura y humedad elevadas generan un ambiente óptimo para la rápida eclosión y desarrollo de larvas que pueden fácilmente parasitar a toda la población, estas ventajas son también compartidas con otros parásitos del género

Ancylostoma que también tiene la facultad de penetrar a través de la piel de sus hospedadores (Raza et al., 2018), entre las presentaciones clínicas de la uncinariosis tenemos la cutánea que puede ser confundida con muchas otras afecciones cutáneas, sin embargo, debe ser tomada en cuenta dependiendo de la zona geográfica donde nos encontremos (Chu et al. 2013).

En un estudio se llevó a cabo en Canadá, obtuvieron resultados inferiores de 0.4 % de prevalencia para *U. stenocephala* (Gaunt & Carr 2011). En otro estudio en Veracruz, México por Alvarado-Esquivel *et al.*, (2015), obtuvieron una prevalencia de 42.6 % con perros de albergue, demostrando una presencia similar a la encontrada en este estudio. Por el contrario, en el trabajo de Aguillón-Gutiérrez *et al.*, (2021) no fue reportada la presencia de *Uncinaria* spp.

Por otro lado, un estudio reciente menciona prevalencias para *Toxocara canis* entre 0 y 90 %, atribuyendo la alta presencia además de las variables inherentes al animal como edad, sexo, raza, estado inmunológico, etc. o condiciones climatológicas, a las características socioculturales de cada lugar considerado (Ketzis *et al.*, 2020). Diversos estudios se han llevado a cabo en México obteniendo también una amplia variación en las prevalencias que tienen que ver más con las condiciones propias de los animales, el medio y las personas que con las características del parásito (Vélez-Hernández *et al.*,2014; Alvarado-Esquivel *et al.*, 2015).


En este sentido, haciendo referencia a las capacidades de *Toxocara* spp., el total de las localidades de muestreo incluyendo, parques y aceras presentaron contaminación con heces de perros infectados, mostrando proporciones que van del 1 al 80 %, la primera en Yucatán y la segunda en Ciudad de México con diferente viabilidad de los huevos encontrados (Ketzis *et al.*, 2020).

En el presente estudio se encontró con una prevalencia de 60 % en los perros de 6-12 meses; no obstante, el grupo que tuvo una mayor prevalencia fue los de 37-48 meses con 78.5 %; es bien conocido que las diferentes formas de infección juegan un papel determinante en los resultados asociados con la edad (Rodríguez-Vivas *et al.*, 2011; Romero-Núñez *et al.*, 2013; Raza *et al.*, 2018).

Así mismo, se menciona que en el Caribe la prevalencia de *Ancylostoma* spp. no ha variado a lo largo del tiempo, tampoco se encontró diferencia significativa con respecto a los animales con o sin dueño y se estipula que debido a que han existido perros que deambulan libres por todo el caribe el suelo ha sido altamente contaminado, aumentando la posibilidad de exposición, infección o reinfección; las prevalencias descritas para *Ancylostoma* spp. van desde el 20 al 90 % (Kim *et al.*, 2022).

Por otro lado, se reportó una prevalencia de 12 % en caninos sin hogar en el norte de México, con un clima seco (Aguillón-Gutiérrez *et al.*, 2021), mientras que, en Armenia, Colombia, se presentó una prevalencia de 13.9 % en *Ancylostoma* spp. (Giraldo *et al.*, 2005), en comparación a la prevalencia obtenida en este estudio que fue de un 81.7 % que concuerda totalmente con lo reportado por Alvarado-Esquivel *et al.*, (2015) de 88 %. Las condiciones climatológicas de las islas del Caribe y Colombia son muy similares a las de este estudio y las de Medellín en el estado de Veracruz (Alvarado-Esquivel *et al.*, 2015), pero muy lejanas a las características del estudio del norte de México, ya que esa región

se caracteriza por presentar un clima árido o semiárido (Aguillón-Gutiérrez *et al.*, 2021). Lo antes mencionado demuestra que es de suma importancia implementar los programas de desparasitación canina en los animales de compañía en este caso los caninos, para así disminuir la presencia de helmintos intestinales.

Según estudios en el Oriente Antioqueño, Colombia; las prevalencias de endoparásitos alcanzaron los 72.1 %, siendo de mayor relevancia *Uncinaria stenocephala*, *Ancylostoma caninum* y *Trichuris vulpis* (Sierra-Cifuentes *et al.*, 2014). Mientras que, en el albergue del municipio de Jamapa, Veracruz se obtuvo una prevalencia de 98.7 %; siendo *Ancylostoma* spp., la de mayor prevalencia en el análisis obtenido con un resultado de 81.7 %.

La contaminación con heces caninas son un importante problema de salud pública gracias al riesgo de transmisión de enfermedades zoonóticas parasitarias ya que no solo las personas que tienen mascotas están expuestas, sino todas las personas que se encuentren dentro de esa zona geográfica. Se estima que en la Ciudad de México cada día se pulverizan en el ambiente al menos cinco toneladas de heces de perros con dueños que no tienen la cultura o precaución de levantar los desechos de su mascota (Aguillón-Gutiérrez et al., 2021).

Ya es bien conocido que los resultados y diferencias entre los hallazgos reportados a nivel internacional son gracias a la temporada del año, las características del ambiente como humedad y temperatura, la cantidad de muestras colectadas y analizadas, edad de los animales, además de las técnicas empleadas; amén de las características socioculturales y económicas del país o región estudiada. Se ha documentado que en zonas con difícil acceso a la información y con bajo nivel socioeconómico los problemas serán más severos. Asimismo, es conocido que en los albergues las prevalencias siempre son las más altas reportadas debido principalmente la falta de higiene a causa de la escasez de recursos económicos y a la alta densidad de población manejada, problemas nutricionales y demás factores que aumentan la problemática (Rodríguez-Vivas et al., 2011; Ruvalcaba 2012; Alvarado-Esquivel et al., 2015; Trasviña-Muñoz et al., 2017; García-Hinojosa et al., 2018; Ketzis et al., 2020; Zhao et al., 2022).

Conclusiones

Se observó la presencia de parásitos gastrointestinales *Ancylostoma* spp., *Toxocara* spp., *Uncinaria* spp., *Strongyloides* spp., *Giardia* spp. y *Trichuris* spp. en las heces de los perros que habitan el albergue de Jamapa, Veracruz y se determinó que existe una alta frecuencia de parasitosis en la población canina de este albergue.

Recomendaciones

Es necesario desarrollar un sistema de control parasitario acorde a las necesidades de cada refugio/albergue y contar con las medidas pertinentes para reducir la transmisión de todo tipo de enfermedades, tomando en cuenta las condiciones económicas, poblacionales y geográficas de cada área.

Además, es importante continuar con este tipo de estudios que permitan conocer el estado de salud que guarda la población de mascotas domiciliadas y no domiciliadas. Tomando en consideración que, en algunas ocasiones muchas de ellas son dadas en adopción y se integrarán al seno de una familia. Por lo que, asegurando el estado de la salud de las mascotas, se coadyuva en preservar la salud pública y con ello se disminuirá la presencia de algunas de las enfermedades zoonóticas.

Finalmente, es necesario implementar normativas que ayuden a mejorar la situación de los animales en este tipo de situaciones con el fin de reducir el hacinamiento, el maltrato y el sufrimiento animal.

Contribución de los autores

"Conceptualización del trabajo, R.S.R.M., R.S.D., C.R.A.; desarrollo de la metodología, R.S.R.M., R.S.D., R.A.V.H., S.A.J.L.; manejo de software, R.A.V.H., C.R.A.; validación experimental, R.S.D.; A.C.Y., R.A.V.H., O.R.N.F.; análisis de resultados, R.S.R.M., R.S.D., C.G.Y.; Manejo de datos, R.S.D., O.R.N.F., S.R.J.L.; escritura y preparación del manuscrito, R.S.R.M., R.S.D.; redacción, revisión y edición, R.S.R.M, R.S.D., R.A.V.H., A.C.Y; administrador de proyectos, R.S.D., C.R.A., A.C.Y.; adquisición de fondos, R.S.D.

"Todos los autores de este manuscrito han leído y aceptado la versión publicada del mismo."

Financiamiento

Esta investigación fue financiada por el Laboratorio de Parasitología en la Unidad de Diagnóstico del rancho "Torreón del Molino" de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Veracruzana y con fondos propios".

Declaraciones éticas

En concordancia con la NOM-063-ZOO-1999, el presente estudio fue aprobado por la Comisión de Bioética y Bienestar Animal, perteneciente a la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Veracruzana.

Agradecimientos

Los autores agradecen las facilidades proporcionadas por la administración del Albergue Jamapa, para realizar esta investigación; así como estudiantes y servicio social que participaron en la colecta de las muestras.

Conflicto de interés

"Los autores declaran no tener conflicto de interés".

Referencias

Aguillón-Gutiérrez, D., Meraz-Rodríguez, Y., García-De-La-Peña, C., Ávila-Rodríguez, V., Rodríguez-Vivas, R.I., & Moreno-Chávez, M. (2021). Prevalence of parasites in dog´s feces of Gomez Palacio, Durango, Mexico. *Abanico veterinario*, 11, e127. https://doi.org/10.21929/abavet2021.39

Alvarado-Esquivel, C., Romero-Salas, D., Aguilar-Domínguez, M., Cruz-Romero, A., Ibarra-Priego, N., & Pérez-de-León, A.Á. (2015). Epidemiological assessment of intestinal parasitic infections in dogs at animal shelter in Veracruz, Mexico. *Asian Pacific Journal of Tropical Biomedicine*, 5, 34–39. https://www.sciencedirect.com/journal/asian-pacific-journal-of-tropical-biomedicine/vol/5/issue/1

Cacció, S., Thompson, R.C.A., McLauchlin, J., & Smith, H. (2005). Unravelling *Cryptosporidium* and *Giardia* epidemiology. *Trends in Parasitology*, 21(9), 430-437. https://doi.org/10.1016/j.pt.2005.06.013

Cabrera, G., & Molina. V.M. (2015). Prevalencia de *Giardia duodenalis* en un albergue canino, Caldas, Antioquia. *Journal of Agriculture and Animal Sciences*, 5(2), 70-80. https://www.redalyc.org/journal/896/89666956004/html/

Caraballo, A., Jaramillo, A., & Loaiza, J. (2007). Prevalencia de parásitos intestinales en caninos atendidos en el centro de veterinaria y zootécnica de la universidad CES. *CES Medicina Veterinaria y Zootecnia*, 2(2), 24-31. https://revistas.ces.edu.co/index.php/mvz/article/view/375

Coles, G.C., Bauer, C., Borgsteede, F.H., Geerts, S., Klei, T.R., Taylor, M.A., & Waller, P.J. (1992). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Methods for the detection of anthelmintic resistance in nematodes of veterinary importance. *Veterinary Parasitology*, 44(1-2), 35-44. https://doi.org/10.1016/0304-4017(92)90141-u

Chu, S., Myers, S.L., Wagner, B., & Snead, E. (2013). Hookworm dermatitis due to *Uncinaria stenocephala* in a dog from Saskatchewan. *The Canadian Veterinary Journal*, 54 (8), 743-747 p. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711160/pdf/cvj_08_743.pdf

Dantas-Torres, F., & Otranto, D. (2014). Dogs, cats, parasites, and humans in Brazil: opening the black box. *Parasites & Vectors*, 7, 1-25. https://doi.org/10.1186/1756-3305-7-22

Bowman, D.D., Lucio-Forster, A., & Lee, A.C.Y. (2021). 113 Hookworms, Editor(s): Jane E. Sykes in: Greene's Infectious Diseases of the Dog and Cat (Fifth Edition), W.B. Saunders. Pages 1436-1443. ISBN 9780323509343 https://doi.org/10.1016/B978-0-323-50934-3.00113-0

Eslahi, A.V., Hashemipour, S., Olfatifar, M., Houshmand, E., Hajialilo, E., Mahmoudi, R., Badri, N., Ketsis, F.K. (2022). Global prevalence and epidemiology of *Strongyloides stercoralis* in dogs: a systematic review and meta-analysis. *Parasites & Vectors*, 15, 21 https://doi.org/10.1186/s13071-021-05135-0

García-Hinojosa, G.A., Ávila-Huerta, S.A., Nevárez-Moorillón, G.V., Rodríguez-Zapién, J.F., Hernández-Castaños, M.R., & Adame-Gallegos, J.R. (2018). Identification of parasites in dogs housed in temporary homes in Chihuahua, Chihuahua, Mexico. *Salud Pública de México*, 60(1), 07-108. https://doi.org/10.21149/8937

Gaunt, M. C., & Carr, A. P. (2011). A survey of intestinal parasites in dogs from Saskatoon, Saskatchewan. *The Canadian Veterinary Journal*, 52(5), 497–500. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078000/pdf/cvj 05 497.pdf

Giraldo, M.I., García, N.L., & Castaño, J.C. (2005). Prevalencia de helmintos intestinales en caninos del departamento del Quindío. *Biomédica*, 25, 326-352. http://www.scielo.org.co/pdf/bio/v25n3/v25n3a10.pdf

Godínez-Galaz, E.M., Veyna-Salazar, N.P., Olvera-Ramírez, A.M., Milián-Suazo, F., Perea-Razo, C.A., Bernal-Reynaga, R., & Cantó-Alarcón, G.J. (2019). Prevalence and Zoonotic Potential of *Giardia intestinalis* in dogs of the central region of Mexico. *Animals an open access journal from MDPI*, 9(6), 325. https://doi.org/10.3390/ani9060325

Instituto Nacional de Estadística y Geografía [INEGI]. Compendio de información geográfica municipal (2010), Jamapa, Veracruz de Ignacio de la Llave. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/30/30090.pdf

Iannacone, J.O., Cordova, K.M., & Wong, R.V. (2001). Estructura comunitaria de helmintos de perros vagabundos de San Juan de Lurigancho, Lima, Perú. *Revista Brasileira de Zoologia*, 18(1), 277-288. https://doi.org/10.1590/S0101-81752001000500024

Ketzis, J.K., & Lucio-Forster, A. (2020). *Toxocara canis* and *Toxocara cati* in domestic dogs and cats in the United States, Mexico, Central America and the Caribbean: A review. *Advances in Parasitology*, 109, 655-714. https://doi.org/10.1016/bs.apar.2020.01.027.

Kim, J., Lucio-Forster, A., & Ketzis, J. K. (2022). *Ancylostoma* in dogs in the Caribbean: a review and study from St. Kitts, West Indies. *Parasites & Vectors*, 15(1), 139. https://doi.org/10.1186/s13071-022-05254-2

Leventhal, R., Cheadle, R.F. (1992). Parasitología médica: texto autodidáctico. México: Interamericana: & McGraw-Hill, Tercera edición. ISBN: 9682518547.

Morales, M., Soto, S., Villada, Z., Buitrago, J., & Uribe, N. (2016). Helmintos gastrointestinales zoonóticos de perros en parques públicos y su peligro para la salud pública. *Revista CES Salud Pública*, 7(2), 49-56. https://revistas.ces.edu.co/index.php/ces-salud-publica/article/view/3593/2690

Naupay, I., Asucena, Castro, H. Julia, & Tello A. Manuel. (2019). Prevalencia de parásitos intestinales con riesgo zoonótico en *Canis lupus familiaris* de la localidad de Retes, Lima, Perú. *Revista de Investigaciones Veterinarias del Perú*, 30(1), 320-329. https://doi.org/10.15381/rivep.v30i1.15766

Paradies, P., Iarussi, F., Sasanelli, M., Capogna, A., Lia, R.P., Zucca, D., Greco, B., Cantacessi, C., Otranto, D. (2017). Occurrence of strongyloidiasis in privately owned and sheltered dogs: clinical presentation and treatment outcome. *Parasites & Vectors*, 10, 345. https://doi.org/10.1186/s13071-017-2275-5

Quijada, J., Bethencourt, A., Pérez, A., Vivas, I., Aguirre, A., & Reyes, Y. (2008). Parasitismo gastrointestinal en un bioterio canino en Venezuela. *Revista de la Facultad de Ciencias*Veterinarias, 49(2), 91-98. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0258-65762008000200004

Raza, A., Rand, J., Qamar, A. G., Jabbar, A., & Kopp, S. (2018). Gastrointestinal Parasites in Shelter Dogs: Occurrence, Pathology, Treatment and Risk to Shelter Workers. *Animals: an open access journal from MDPI*, 8(7), 108. https://doi.org/10.3390/ani8070108

Rodríguez-Vivas, R.I., Gutiérrez-Ruiz, E., Bolio-González, M., Ruiz-Piña, H., Ortega-Pacheco, A., Reyes-Novelo, E., Manrique-Saide, P., Aranda-Cirerol, F., & Lugo-Pérez, J. (2011). An epidemiological study of intestinal parasites of dogs from Yucatan, Mexico, and their risk to public health. *Vector-borne and zoonotic diseases*, 11(8), 1141-1144. ISSN: 1530- 3667. https://doi.org/10.1089/vbz.2010.0232

Romero-Núñez, C., Yánez-Arteaga, S., Mendoza-Martínez, G.D., Bustamante-Montes, L.P., & Ramírez-Duran, N. (2013). Contamination and viability of eggs of *Toxocara* spp. in soil and feces collected from public parks, streets and dogs in Toluca, Mexico. *Revista Científica*, Facultad de Ciencias Veterinarias, Universidad del Zulia, 23, 475–479. https://www.redalyc.org/pdf/959/95928830003.pdf

Ruvalcaba, F., García, M., Escobedo, J., & Ruvalcaba, M. (2012). Detección de parasitosis gastroentéricas en canideos en la zona conurbada Zacatecas-Guadalupe, México. *Revista Electrónica de Veterinaria*, 13(10), 1-15. ISSN: 1695-7504. https://www.redalyc.org/pdf/636/Resumenes/Resumen_63624631008_1.pdf

Saari S., Näreaho A., & Nikander S. (2019). Canine Parasites and Parasitic Diseases. Edit. Elsevier. 261 p. ISBN: 9780128141137

Sarmiento-Rubiano, L.A., Delgado, L., Ruiz, J.P., Sarmiento, M.C., & Becerra, J. (2018). Parásitos intestinales en perros y gatos con dueño de la ciudad de Barranquilla, Colombia. *Revista de Investigaciones Veterinarias del Perú*, 29(4), 1403-1410. http://dx.doi.org/10.15381/rivep.v29i4.15348

Sierra-Cifuentes, V., Jiménez-Aguilar, J., Alzate, A., Cardona-Arias, J.A., & Ríos-Osorio, L. (2014). Prevalencia de parásitos intestinales en caninos de dos centros de bienestar animal de Medellín y el Oriente antioqueño. *Revista de Medicina Veterinaria*, 55-66. http://www.scielo.org.co/pdf/rmv/n30/n30a05.pdf

Sotiriadou, I., Pantchev, N., Gassmann, D., & Karanis, P. (2013). Molecular identification of *Giardia* and *Cryptosporidium* from dogs and cats. *Parasite* 20, 8. https://doi.org/10.1051/parasite/2013008

Solarte-Paredes, L.D., Castañeda-Salazar, R., Pulido-Villamarín, A.P. (2013). Parásitos gastrointestinales en perros callejeros del centro de zoonosis de Bogotá D.C., Colombia. *Neotropical Helminthology*, 7(1), 83-93. https://doi.org/10.24039/rnh201371951

Tarqui-Terrones, K., Ramírez-Carranza, G., & Beltrán-Fabián, M. (2019). Evaluación de métodos de concentración y purificación de *Giardia* spp. a partir de muestras coprológicas. *Revista Peruana de Medicina Experimental y Salud Publica*, 36(2), 275-80. http://dx.doi.org/10.17843/rpmesp.2019.362.4151

Traversa, D. (2011). ¿Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like *Trichuris vulpis? Parasites and Vectors*, 8(4), 32. https://doi.org/10.1186/1756-3305-4-32

Trasviña-Muñoz, E., López-Valencia, G., Álvarez, C.P., Cueto-González, S.A., Monge-Navarro, F.J., Tinoco-Gracia, L., Núñez-Castro, K., Pérez-Ortiz, P., Medina-Basulto, G.E., Tamayo-Sosa, A.R., & Gómez-Gómez, D. (2017). Prevalence and distribution of intestinal parasites in stray dogs in the northwest area of Mexico. *Austral Journal of Veterinary Sciences*, 49(2), 105-111. https://doi.org/10.4067/S0719-81322017000200105

Thrusfield, M. (2005) Veterinary epidemiology. 2nd Edition, Blackwell Science, Oxford, 117-198.

https://www.academia.edu/103112083/Veterinary_Epidemiology_Michael_Thrusfield

Uppal, H.S., Bal, M.S., Singla, L.D., Kaur, P., Sandhu, B.S. (2017). Morphometric and scanning electron microscopy-based identification of *Ancylostoma caninum* parasites in dog. *Journal of Parasitic Diseases*, 41, 517–522. https://doi.org/10.1007/s12639-016-0841-7

Vasilopulos, R.J., Rickard, L.G., Mackin, A.J., Pharr, G.T., & Huston, C.L. (2007). Genotypic analysis of *Giardia duodenalis* in domestic cats. *Journal of Veterinary Internal Medicine*, 21, 352–355. https://doi.org/10.1892/0891-6640(2007)21[352:gaogdi]2.0.co;2

Vélez-Hernández, L., Reyes-Barrera, K.L., Rojas-Almaraz, D., Calderon-Oropeza, M.A.,

Cruz-Vázquez, J.K., & Arcos-García, J.L. (2014). Potential hazard of zoonotic parasites present in canine feces in Puerto Escondido, Oaxaca. Salud Publica México, 56, 625-630. https://www.scielo.org.mx/pdf/spm/v56n6/v56n6a12.pdf

Zhao, Z.Y., Li, M.H., Lyu, C., Meng, X.Z., Qin, Y.F., Yang, X.B., Ma, N., Zhao, Q., Zhang, Y., & Jiang, J. (2022). Prevalence of Giardia duodenalis Among Dogs in China from 2001 to 2021: A Systematic Review and Meta-Analysis. Foodborne Pathogens and Diseases. 19(3), 179-191. https://doi.org/10.1089/fpd.2021.0073