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RESUMEN

Water scarcity for irrigation is affecting wheat production in Mexico, making
it essential to select genotypes with greater water-use efficiency. This
study aimed to evaluate grain yield and its components in seven durum
wheat genotypes under three irrigation regimes during the 2021-2022
and 2022-2023 autumn—winter cycles. Five commercial varieties and two
experimental lines were assessed under three gravity irrigation schedules
(2, 3, and 4 supplemental irrigations). A completely randomized design
was used, with a split-plot arrangement and three replications. The applied
water depths for two, three, and four supplemental irrigations were 49.5,
63.4, and 72.5 cm, respectively. A significant difference (p < 0.05) was found
in grain yield across irrigation treatments. The highest yield was obtained
with four supplemental irrigations (8,482.9 kg ha"), followed by three
(7,709.4 kg ha') and two (6,645.9 kg ha). The STOT line achieved the
highest grain yield, followed by the TARRO line and the Noroeste C2021
variety, although the latter two showed statistically similar yields (p < 0.05)
to the rest of the genotypes. Hectoliter weight exhibited the strongest
correlation with grain yield.

PALABRAS CLAVE: Titicum durum L., water stress, genotypes,
gravity irrigation, yield.
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Irrigation regimes: wheat. / Regimenes de riego: trigo.

ABSTRACT

La escasez de agua para riego esta afectando la produccion de trigo en México, por
lo que es necesario seleccionar genotipos mas eficientes con el uso del agua. El objetivo fue
evaluar el rendimiento de grano y sus componentes de siete genotipos de trigo cristalino,
bajo tres regimenes de riego durante los ciclos otono—invierno 2021-2022 y 2022-2023. Se
evaluaron cinco variedades y dos lineas experimentales bajo tres calendarios de riego por
gravedad (2, 3 y 4 riegos de auxilio). Se utilizé un disefio completamente al azar bajo un arreglo
de parcelas divididas con tres repeticiones. Las laminas aplicadas para dos, tres y cuatro riegos
de auxilio fue de 49.5, 63.4 y 72.5 cm respectivamente. Se encontré diferencia significativa
(p < 0.05) para rendimiento de grano entre regimenes de humedad. Con cuatro auxilios se
obtuvo un rendimiento de 8,482.9 kg ha', con tres auxilios 7,709.4 kg ha' y con dos auxilios el
rendimiento fue de 6,645.9 kg ha'. La linea STOT presentd el mayor rendimiento de grano, al
igual que la linea TARRO y la variedad Noroeste C2021, aunque estas dos ultimas presentaron
un rendimiento similar (p < 0.05) al resto de los materiales. El peso hectolitrico presento la
mayor correlacién con el rendimiento de grano.

KEY WORDS: Triticum durum L., estrés hidrico, genotipos, riego por gravedad,
rendimiento.

Introduction

Mexico is predominantly vulnerable to water scarcity, which directly impacts its agricultural
production since a significant portion of the country’s territory is classified as arid or semi-arid
(Salinas et al., 1998). In regions where droughts are recurrent, irrigated agriculture plays a crucial
role in development. However, competition for water resources poses one of the greatest threats
to growth in these areas. Therefore, it is essential to optimize water use in irrigated agriculture by
reducing applied volumes without significantly compromising yields (Ojeda et al., 2006).

Wheat (Triticum spp.) is one of the most important crops worldwide, ranking among the
top three most produced and consumed grains along with rice and corn (Neri et al., 2021). In
2023, more than 565,000 hectares of wheat were planted in Mexico, with over 90 % of production
occurring under irrigation conditions (SIAP, 2023), however, one of the main challenges for wheat
production in the country is the limited water availability, with the state of Sonora being among
the most affected due to its classification as a region experiencing high hydrological stress
(CONAGUA, 2024). Despite these constraints, Sonora ranks first in national wheat production,
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with more than 260,000 hectares cultivated, followed by Guanajuato, Sinaloa, and Baja California
(SIAP, 2024).

In recent years, droughts driven by global climate change have become more frequent,
making research on plant responses to water deficits essential (Lan et al., 2011). The impact
of drought on crop productivity depends on various intrinsic factors, such as the phenological
stage of the plant at the time of drought, the plant species, and the variety within a species
(Robles, 2007; Rosabal et al., 2014). Grain yield is influenced by the amount of water transpired
by plants, the efficiency with which they convert that water into biomass, and the proportion of
biomass allocated to grain formation (Sadras & McDonald, 2012). Achieving a balance between
high water-use efficiency and high yields is critical for the sustainable development of wheat
production (Xu et al., 2018).

Controlled deficit irrigation is a technique that allows for precise water management
without significantly compromising crop yield or quality (Sanchez, 2009). Implementing restricted
irrigation based on phenological stages helps reduce the frequency and volume of water applied,
minimizing yield losses (Mendoza et al., 2016). The greatest reduction in wheat yield occurs when
the water deficit coincides with the flowering stage, which is the critical period for determining
the number of grains per spike (Sadras & McDonald, 2012). Grain yield is determined by factors
such as the number of spikes per unit area, the number of grains per spike, and the average grain
weight. Consequently, any variation in these components directly affects the final yield (Ataei,
2006). In this context, the present study aimed to evaluate grain yield and its components in
seven durum wheat genotypes under three irrigation regimes during the 2021-2022 and 2022—
2023 autumn—winter cycles in southern Sonora, Mexico.

Material and Methods
Location of the experiment

The experiment was conducted at the Norman E. Borlaug Experimental Field (CENEB)
of the National Institute of Forestry, Agricultural, and Livestock Research (INIFAP) in the arid
region of southern Sonora, Mexico. The study site is located in the Yaqui Valley at coordinates
27°22’15” N and 109 ° 55’ 21” W, at an altitude of 39 masl. Two cropping cycles were evaluated:
autumn-winter (AW) 2021-2022 and 2022-2023. The soil type is vertisol (>50 % clay). The
average annual precipitation is 434.9 mm, with 83 % concentrated between June and October,
while the remainder is distributed between November and March. The mean annual temperature
is 24.6 °C, with an average annual minimum of 14.9 °C and a maximum of 34.3 °C. The annual
average values of cumulative reference evapotranspiration (ET,) range from 2,000 to 2,445 mm
(CONAGUA, 2024), significantly exceeding the total annual precipitation.
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Agronomic management

The yield trial was conducted during the 2021-2022 and 2022-2023 autumn-winter
cropping cycles, in both cycles, sowing took place during the first week of December, which
falls within the optimal planting window. The crop was sown under dry soil conditions using an
experimental tractor-powered seeder, at a seeding rate of 100 kg ha', with double-row planting on
the ridge of the furrow. After sowing, an emergence irrigation (El) was applied. The fertilization rate
was 276N-52P-00K, with the total amount of P and half of the N applied before sowing, and the
remaining nitrogen applied before the first supplemental irrigation (SI). Fertilizer was band-applied
alongside the plant rows using a wheat planter. Urea (46N-00P-00K) served as the N source,
while monoammonium phosphate (11N-52P-00K) was used for P. The irrigation system employed
gravity flow, using 1.5-inch aluminum siphons.

For broadleaf weed control, a post-emergence chemical application was carried out using
Metsulfuron-methyl + Thifensulfuron-methyl at a rate of 30 g ha'. For narrow-leaf weeds, Pinoxaden
(5.05 %) was applied at a rate of 1 L ha™'. To manage the greenbug (Schizaphis graminum), an
insecticide application of 250 mL ha' of Imidacloprid + Beta-cyfluthrin was performed. Herbicide
and insecticide applications were carried out 35 days after sowing (DAS) across all irrigation
regimes using a tractor-powered sprayer equipped with 12 nozzles and a water volume of 250 L
ha™'. No preventive or curative disease control measures were applied, as the evaluated varieties
and lines exhibited resistance to major diseases, including leaf rust and stripe (yellow) rust.

Treatments and experimental design

Seven genotypes were evaluated, five of which correspond to commercial durum wheat
varieties released by INIFAP’s wheat breeding program, while the remaining two are advanced
lines from the International Maize and Wheat Improvement Center (CIMMYT) (Table 1). These
genotypes were selected for their favorable agronomic and production traits and represent the
most widely used supplies in southern Sonora. Additionally, the variety CIRNO C2008 was chosen
as a control, as it is the most widely cultivated in the region. All genotypes were evaluated under
three different irrigation regimes: 2 supplemental irrigations (T1), 3 supplemental irrigations (T2),
and 4 supplemental irrigations (T3), the latter serving as the control since it provided optimal
water conditions for crop development. A completely randomized design was used with a split-plot
treatment arrangement, where the main plots corresponded to the number of irrigations and the
subplots to the genotypes, with three replications. The experimental unit consisted of two furrows,
each five meters long, spaced 0.80 cm apart, for a total area of 8 m2.
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Table 1. Lines and varieties used in the present research for the two
agricultural cycles.

No. Genealogy Status
1 CIRNO C2008 *Control
2 CENEB Oro C2017 Variety
3 Don Lupe C2020 Variety
4 Noroeste C2021 Variety
5 ROELY HP C2024 Variety
6 STOT Line

7 TARRO Line

*Most planted wheat variety in the region

Study variables

The agronomic variables were evaluated following the methodology described by Pietragalla
& Pask (2013). These included plant height (PH), measured in centimeters from the soil surface
to the top of the spike using a measuring rod; days to flowering (DTF), recorded as the number
of days from sowing until 50 % of the plants had initiated flowering; and physiological maturity
(DPM), measured as the number of days from sowing until 50 % of the plants exhibited yellow
peduncles and glumes beginning to change color. To assess yield components, the methodology
described by Miranda et al. (2016) was used. The thousand-grain weight (TGW) was measured
in grams using a digital scale, with a randomly collected composite sample from the harvested
grain. The harvest index (HI) was calculated as the ratio GYI/BYI, where GYI = grain yield from 25
stems in the plot, and BYI = biological yield from 25 stems in the plot. The number of spikes per
square meter (SPSM) was determined by counting the number of spikes per m? in each genotype
replication. The hectoliter weight (HW) was obtained from a clean 500 g sample, measured with a
volumetric balance (Seedburo Equipment Co., Chicago, IL), and expressed in kg hL-'. Grain yield
was determined by harvesting the entire experimental plot (8 m?), with the yield extrapolated to kg
ha'. The harvest was carried out using an experimental thresher, and the final yield was adjusted
to 12 % moisture content.

The evaluated water variables included net irrigation depth (NI), gross irrigation depth (Gl),
and application efficiency (AE). Additionally, the phenological stage at which each supplemental
irrigation (SI) was applied and the days to irrigation (DTI) were recorded. To measure volumetric
soil moisture before irrigation (HV__), a Time Domain Reflectometer (TDR) sensor was used during
both germination and supplemental irrigations. The net irrigation depth required to bring the soil to
field capacity (FC) was determined using Equation 1.
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Equation 1. NI= (FC-HV,_ ) * Sd

where FC and HV__ are expressed in cm® cm, and Sd represents soil depth (cm).

The gross irrigation depth (Gl) was determined using Equation 2.

Gl = Qxt
Equation 2. A

where Q is the volume of water applied to the plot (m® s™), tis the irrigation time (s), and A
is the irrigated area (m?).

The application efficiency (AE) was calculated using Equation 3.

NI
Equation 3. AE =77 +100

where NI and Gl are expressed in cm.

Statistical analysis

A combined analysis of variance was performed for the two cropping cycles using
a completely randomized split-plot design, where the main plots corresponded to the number
of supplemental irrigations and the subplots to the durum wheat varieties. Mean comparisons
among treatments were conducted using Tukey’s test to determine the least significant difference
(p = 0.05). Data analysis was performed through SAS 9.4 (Statistical Analysis System, 2013) for
Windows.

Results and Discussion

The phenological stages corresponding to the application of each SI, DTI, NI, GI, and
AE were recorded for each irrigation treatment (Table 2). For germination irrigation, a NI of 17.3
cm was applied across all three treatments, equivalent to 1,730 m® ha™. In Treatment 1 (T1),
plants experienced severe water stress during tillering and moderate stress during the booting
stage. A Gl of 15.7 cm was applied in the first Sl and 16.5 cm in the second, having a cumulative
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total of 49.5 cm; with an average AE of 60.3 %. The gross irrigation depth values obtained in
this study align with those reported by Sifuentes et al. (2021), who applied a total Gl of 50.6 cm
throughout the maize growing cycle in northern Sinaloa under a gravity irrigation system, including
one germination irrigation and 2 supplemental irrigations. Treatment 2 (T2) was subjected to mild
stress during tillering to avoid water stress during booting and grain filling, as water deficit during
these critical stages significantly reduces grain yield. Ayed et al. (2017) specified that grain yield
and certain yield components are negatively affected when water availability is reduced during
grain filling. The Gl values applied in this treatment were 15.4 cm, 16.7 cm, and 14.0 cm for the 1%,
2" and 3" SI, respectively, resulting in a total Gi of 63.4 cm and an average AE of 61.0 %. These
values are consistent with those reported by Ledesma et al. (2010) in Celaya, Guanajuato, where
three supplemental irrigations were applied to wheat. In Treatment 3 (T3), SI was applied during
tillering, stem elongation, flowering, and grain filling, with Gl values of 14.0 cm, 13.0 cm, 14.9 cm,
and 13.3 cm, respectively, resulting in a total Gi of 72.5 cm and an application efficiency of 58.9 %.

Analysis of variance

Table 3 presents the analysis of variance, showing highly significant differences (p < 0.01)
between growing cycles for all evaluated variables, except for grain yield (GY), indicating variation
across the two years of evaluation. Significant differences (p < 0.01) were found among irrigation
treatments for all evaluated variables, demonstrating that the amount of water available in the soil
influenced crop growth and development. These findings align with those reported by Ul et al.
(2018), who observed that grain yield is affected by irrigation, genotype, and nitrogen application.
Highly significant differences (p < 0.01) were also found among genotypes for all variables,
indicating genetic diversity among the evaluated materials. Significant interactions (p < 0.01) were
detected between cycle * genotypes for DTF, HW, and TGW, while no significant differences were
found for REP*IN across all evaluated variables. The interaction IN*GEN showed a significant
difference only for TGW (Table 3).

Table 2. Net irrigation, gross irrigation, and application efficiencies in
irrigation treatments for seven durum wheat genotypes, Norman E.
Borlaug Experimental Field, Obregén, Sonora, Mexico.

o ) NI Gl AE
Treatments Irrigation Phenological stage DTI
(cm) (cm) (%)
T1 L ) 10.6 17.3 61.2
Germination Sowing 0
o 9.8 15.7 62.4
18I Tillering 50
) 9.5 16.5 57.5
2 Sl Booting 85
Total 29.9 49.5 181.1
Average 9.9 16.5 60.3
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Borlaug Experimental Field, Obregén, Sonora, Mexico.

Treatments

T2

Total

Average

T3
Control

Total

Average

Continuation

Table 2. Net irrigation, gross irrigation, and application efficiencies in
irrigation treatments for seven durum wheat genotypes, Norman E.

Irrigation Phenological stage
Germination Sowing
18I Tillering
28I Booting
38l Grain filling
Germination Sowing
18I Tillering
28l Stem elongation
38I Flowering
4 8l Grain filling

DTI

0

43
76
99

36
67
88
104

N

(cm)
10.6
9.5
10.3
8.4
38.8

9.7

10.6
9.0
8.1
7.0
8.0
42.7

8.5

Gl

(cm)
17.3
15.4
16.7
14.0
63.4

15.8

17.3
14.0
13.0
14.9
13.3
72.5

14.5

AE

(%)
61.2
61.6
61.4
59.9
244 1

61.0

61.2
64.2
62.3
46.9
60.1
294.7

58.9

DTI: days to irrigation; Ni: net irrigation; Gl: gross irrigation; AE: application efficiency; SI: supplemental irrigation.

Table 3. Analysis of variance, mean squares, and statistical significance
of the evaluated variables in irrigation treatments for seven durum
autumn-winter cycles 2021-2022, 2022-2023,
Norman E. Borlaug Experimental Field, Obregén, Sonora, Mexico.

wheat genotypes,

sV
CYCLE

IN

REP*IN

GEN
IN*GEN
CYCLE*GEN
ERROR

R2

CV (%)

DF

GY
341744.7
35726357.6**
226090.9™
554393.2**
181610.5™
121821.1m
104747.9**
0.8

4.2

PH
340.0**
458.3**
1.4m
118.2**
4.3
9.2
5.9%*
0.7

2.7

DTF
1308.2**
35.6**
0.6
19.9**
1.0m
6.3**
1.2%*

0.9

1.4

DPM
1116.0*
215.4*
2.1m
21.3*
1.8
1.0
1.4**
0.9

1.0

HW
4240.9**
5755.4**
13.7
2214.5™
12.5"™
94.8*
17.3*
0.9

0.5

TGW
23684.0**
213.3*
11.0m
171.4*
22.9*
32.8*
10.6**
0.9

52

*, **: significant at p < 0.05 and p < 0.01, respectively; ns: not significant; SV: source of variation; IN: irrigation
number; GEN: genotypes; REP: repetitions; DF: degrees of freedom; GY: grain yield; PH: plant height; DTF:
days to flowering; DPM: days to physiological maturity; HW: hectoliter weight; TGW: thousand-grain weight;
CV: coefficient of variation.
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When comparing the two evaluation cycles (Table 4), differences were identified in the
environmental conditions that influenced the expression of the genotypes. In the AW 2021-2022
cycle, 589 accumulated cold hours were recorded, while in the AW 2022—-2023 cycle, this number
increased to 754 hours (REMAS, 2024), resulting in a longer cycle duration for the second
evaluation period. According to Gizaw et al. (2016), ambient temperature and soil moisture
availability explain 86 % of yield variability. The higher number of accumulated chilling hours
during the AW 2022-2023 cycle led to increased plant height (PH), a greater number of days
to flowering (DTF), days to physiological maturity (DPM), and a higher thousand-grain weight
(TGW). The lowest recorded temperatures in this period (< 5 °C) occurred during the tillering stage,
between 38 and 53 days after sowing (DAS), coinciding with the first supplemental irrigation (SI)
for the evaluated treatments. These results align with those reported by Buenrostro et al. (2022).
In contrast, during the AW 2021-2022 cycle, significant reductions in PH, DTF, DPM, and TGW
were observed, attributed to higher temperatures during crop growth and development. Previous
studies conducted by Zarazua et al. (2011) indicate that wheat experiences unfavorable conditions
when temperatures exceed the critical threshold. Additionally, drought and high temperatures can
have combined effects (Kaur & Behl, 2010). According to Paquini et al. (2016), the interaction
between drought and extreme temperatures during grain filling is a key factor in reducing yield
components. The results show similar grain yield (p < 0.05) for both agricultural cycles, which can
be attributed to the stability of the evaluated genotypes.

When comparing the number of irrigations (2, 3, and 4 Sl), it was observed that greater
soil water availability allowed the evaluated genotypes to express their maximum yield potential.
The highest grain production (p < 0.05) was obtained with four supplemental irrigations
(8,482.9 kg ha'), followed by the three-irrigation treatment (7,709.4 kg ha') and finally the
two-irrigation treatment (6,645.9 kg ha'). These results align with those reported by Martinez
et al. (2020) in a study conducted in Celaya, Guanajuato, where, under restricted irrigation
conditions, they detected reductions in the grain-filling period, the number of spikes per square
meter, biological yield, harvest index, and grains per square meter, leading to a decline in yield.
Regarding PH, DTF, and TGW, no differences (p < 0.05) were found between three and four
Sl, with only DPM and HW being superior in the four-irrigation treatment. Meanwhile, the two-
irrigation treatment recorded the lowest values (p < 0.05) for PH, DTF, DPM, PH, and TGW
(Table 4). These results are consistent with Blum (2002), who states that water deficit accelerates
wheat flowering. The reductions in yield components resulted in the lowest yield since irrigation
was suspended during the booting stage, causing a lack of soil moisture during the grain-filling
period and preventing the crop from reaching its maximum yield potential. According to Madani
et al. (2010), the effects of drought are reflected in a decreased grain-filling rate and reduced
dry matter distribution. Similarly, this aligns with the findings of Thapa et al. (2019) and Valdés et
al. (2017), who concluded that yield and some crop components decrease with lower irrigation
applications. Likewise, Solis et al. (2013) concluded that with two supplemental irrigations, grain
yield could decrease by up to 13 % compared to three irrigations in wheat cultivation. Similarly,
Shamsi & Kobraee (2011) state that drought stress significantly reduces yield, thousand-grain
weight, and the number of grains per square meter. This study demonstrates the effectiveness of
genetic improvement in Mexico (Table 5). However, as Blum (2011) remarks, despite significant
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advances in wheat yield under adverse conditions worldwide, much remains to be done to further
optimize its productivity under increasingly challenging environmental conditions.

Table 4. Mean values for evaluated cycles and irrigation treatments
in seven hard wheat genotypes, autumn-winter cycles 2021-2022,
2022-2023, Norman E. Borlaug Experimental Field, Obregén, Sonora,

Mexico.

Cycle GY PH DTF DPM HW TGW
2022/2023 7560.6° 90.1° 82.6° 123.4° 816.0° 75.8°
2021/2022 7664.8° 86.8° 76.1° 117.4° 827.6° 58.4°
LSD 114.5 0.8 0.4 0.4 1.4 1.1

Irrigations GY PH DTF DPM HW TGW
4 8482.9° 90.0° 79.9° 122.3° 829.9° 63.9°
3 7709.4° 90.6° 79.9° 121.0° 827.0° 62.8°
2 6645.9° 84.6° 78.3 117.9° 808.4° 59.6°
LSD 168.2 1.2 05 0.6 2.1 1.6

Means followed by the same letter in the columns are statistically equal (Tukey, p < 0.05). GY: grain yield
(kg ha™); PH: plant height (cm); DTF: days to flowering (days); DPM: days to physiological maturity (days);
HW: hectoliter weight (g); TGW: thousand-grain weight (g); LSD: Tukey'’s least significant difference (p = 0.05).

Grain yield and its components

Regarding grain yield, the STOT and TARRO lines and the Noroeste C2021 variety
stood out statistically. However, the latter two were statistically equal (p < 0.05) to the rest of the
evaluated materials. CIRNO C2008 had the lowest average yield in the study, with 7,400.5 kg ha™
(Table 5), but it was only statistically surpassed by the STOT line. Notably, CIRNO C2008 exhibited
a statistically higher TGW (p < 0.05) than the rest of the materials; however, it recorded the lowest
grain yield, contrary to what Espitia et al. (2021) reported, stating that thousand-grain weight and
the number of grains per square meter are the key factors determining the crop’s yield potential.
Regarding SPSM and HI, no significant differences were found among the evaluated genotypes
(Table 5), likely due to the stability and high yield of the materials assessed in this study and their
favorable response to the irrigation regimes. Martin et al. (2011) indicate that the number of SPSM
is a fundamental component in determining the number of grains per square meter.

Revista Bio Ciencias 12, e1837. 10
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Table 5. Mean values of agronomic variables evaluated in seven

durum wheat genotypes during the 2021-2022 and 2022-2023 fall-

winter cycles at the Norman E. Borlaug Experimental Field, Obregén,
Sonora, Mexico.

Genotypes GY PH DTF DPM HW TGW SPSM HI
CIRNO C2008 7400.5° 84.8° 80.52 120.7% 817.7¢ 67.82 368.4° 54.62
CENEB Oro C2017  7542.6° 91.22 77.7¢ 119.1¢ 833.72 61.0v° 403.32 53.82
Don Lupe C2020 7469.8° 87.7° 79.0v° 120.6" 809.5¢ 61.8° 353.32 53.82
Noroeste C20221 7708.5% 86.1b° 79.6% 121.2% 829.2° 61.9° 408.42 54.02
ROELY HP C2024 7579.7° 90.32 78.3% 119.8< 828.9° 57.8° 368.32 53.42
STOT 7932.6° 91.32 80.0%° 122.12 828.3° 63.7° 389.62 52.82
TARRO 7655.32° 87.5° 80.42 119.2¢ 805.1¢ 60.5%° 395.42 52.42
Average 7612.7 88.4 79.3 120.4 821.81 62.1 383.8 53.6
CV (%) 4.2 2.7 1.4 1.0 0.5 5.2 9.8 52
LSD 325.2 24 1.1 1.2 4.17 3.2 55.8 4.1

Means followed by the same letter within columns are statistically equal (Tukey, p < 0.05). GY: grain yield

(kg ha'); PH: plant height (cm); DTF: days to flowering (days); DPM: days to physiological maturity (days);

HW: hectoliter weight (g); TGW: thousand-grain weight (g); SPSM: spikes per square meter; HI: harvest index;
CV: coefficient of variation; LSD: Tukey’s least significant difference (p = 0.05).

Table 6 presents the Pearson correlations between grain yield and its components for
the three evaluated irrigation schedules. Grain yield exhibited strong positive correlations with
hectoliter weight and moderate correlations with plant height, days to physiological maturity, and
harvest index. These results align with Espitia et al. (2021), who reported positive correlations
between grain yield, plant height, and harvest index, with values of 0.4 and 0.54, respectively.
Similarly, they partially agree with the findings by Beche et al. (2014) and Zhou et al. (2014),
who reported correlations above 0.9 between harvest index and grain yield, higher values than
those observed in this study. Days to flowering and days to physiological maturity showed a
strong positive correlation with TGW, while the latter exhibited a negative correlation with test
weight. These findings are consistent with those reported by Lavilla (2022), who found negative
correlations between TGW and HW in wheat cultivation.

Conclusions
The highest grain yield is achieved with the highest irrigation level; however, reducing one
supplemental irrigation only decreases grain yield by 9 %, making it the most viable option in a

water-scarce scenario.

Applying two supplemental irrigations negatively affects grain yield and its components,
which is attributed to water stress during the grain-filling stage. Under limited water availability,
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applying supplemental irrigation during the crop’s most critical phenological stages is crucial to
optimize water use.

The STOT and TARRO lines and the Noroeste C2021 variety stand out for their high grain
yield, with STOT statistically outperforming the commercial control CIRNO C2008.

Table 6. Pearson correlations of yield components under different
irrigation schedules.

GY PH DTF DPM HW TGW SPSM HI
GY 1 0.47** 0.13 0.43** 0.58** 0.04 -0.03 0.44*
PH 1 0.35* 0.53** 0.42** 0.34** 0.04 -0.03
DTF 1 0.84** -0.27* 0.91* -0.08 0.04
DPM 1 0.04 0.82** -0.02 0.28*
HW 1 -0.27** 0.08 0.35*
TGW 1 -0.01 0.26*
SPSM 1 -0.07
HI 1

*, **: significant at p < 0.05 and p < 0.01, respectively. GY: grain yield; PH: plant height; DTF: days to flowering
(days); DPM: days to physiological maturity (days); HW: hectoliter weight (g); TGW: thousand-grain weight (g);
SPSM: spikes per square meter; HI: harvest index.
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