

ISSN 2007-3380

Accepted Manuscript / Manuscrito Aceptado

Tittle Paper/Título del artículo:

Efecto bioestimulante de la microalga Chlorella sorokiniana en cultivo de tomate (Solanum lycopersicum L.)

Biostimulant effect of microalgae Chlorella sorokiniana on growth of tomato (Solanum lycopersicum L.)

Authors/Autores: Padilla-Valle, Y. K., Ulloa-Mercado, G., Gutiérrez-Coronado, M. A., Rentería-Mexía, A., Gortáres-Moroyoqui, P., Díaz- Quiroz, C. A.

ID: e1922

DOI: https://doi.org/10.15741/revbio.13.e1922

Received/Fecha de recepción: March 13th 2025

Accepted /Fecha de aceptación: September 30th 2025

Available online/Fecha de publicación: October 15th 2025

Please cite this article as/Como citar este artículo: Padilla-Valle, Y. K., Ulloa-Mercado, G., Gutiérrez-Coronado, M. A., Rentería-Mexía, A., Gortáres-Moroyoqui, P., Díaz-Quiroz, C. A. (2025). Biostimulant effect of microalgae Chlorella sorokiniana on growth of tomato (Solanum lycopersicum L.). Revista Bio Ciencias, 13, e1922. https://doi.org/10.15741/revbio.13.e1922

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Este archivo PDF es un manuscrito no editado que ha sido aceptado para publicación. Esto es parte de un servicio de Revista Bio Ciencias para proveer a los autores de una versión rápida del manuscrito. Sin embargo, el manuscrito ingresará a proceso de edición y corrección de estilo antes de publicar la versión final. Por favor note que la versión actual puede contener errores de forma.

https://doi.org/10.15741/revbio.13.e1922

ISSN 2007-3380

Artículo original

Efecto bioestimulante de la microalga *Chlorella sorokiniana* en cultivo de tomate (*Solanum lycopersicum L.*)

Biostimulant effect of microalgae *Chlorella sorokiniana* on growth of tomato (*Solanum lycopersicum L.*)

Microalgas bioestimulantes para cultivo de tomate/
Microalgae as biostimulant of tomato crops

Padilla-Valle Y. K. (0000-0002-8506-813X), Ulloa-Mercado G.^{1*} (0000-0001-6801-7712), Gutiérrez-Coronado M. A. (0000-0001-5956-9945), Rentería-Mexía A. (0000-0001-9760-1213), Gortáres-Moroyogui P. (0000-0001-5362-2709), Díaz- Quiroz C. A. (0000-0001-9507-1589)

*Corresponding Author:

Gabriela Ulloa-Mercado Departamento de Biotecnología y Ciencias Alimentarias. Instituto Tecnológico de Sonora. 5 de Febrero, 818 Sur, 85000, Ciudad Obregón, Sonora, México. Teléfono: +52 (644) 4109000. E-mail: ruth.ulloa@itson.edu.mx

RESUMEN

Las microalgas son ricas en compuestos bioactivos con efecto bioestimulante que, al ser aplicados a plantas, estimulan sus procesos fisiológicos. El objetivo fue evaluar el efecto bioestimulante de *Chlorella sorokiniana* en el cultivo de tomate. Se evaluó a concentración de 0.1, 0.5 y 1 % de biomasa de microalga, con aplicaciones en 3 formas: riego, foliar y mixto (riego y foliar). En los principales resultados se observó que la altura y clorofila fueron mayores en la aplicación al suelo a 0.1 %. El mayor peso del fruto $(67 \pm 0.08 \, \mathrm{g})$ y rendimiento $(13.01 \pm 2.17 \, \mathrm{t\cdot ha^{-1}})$ se tuvo en la aplicación al suelo a 0.5 %. Así mismo, se obtuvo mayor número de frutos en la aplicación al suelo al 1 % (331 ± 7.95) , siendo significativamente mayor ($p \le 0.05$) al testigo (123 ± 2.77) . El peso seco foliar y radicular en las aplicaciones foliares y mixtas a concentraciones de 0.1 y 0.5 % fueron mayores ($p \le 0.05$) al testigo. Así mismo, se observó en el análisis foliar que los macronutrientes permanecieron en el rango "suficientes", mientras que el testigo fueron "bajos". Con ello se demuestra que bajas concentraciones de extracto de microalga, estimula tanto el crecimiento de la planta, el aprovechamiento de nutrientes y el rendimiento del cultivo.

PALABRAS CLAVE:

Extractos intracelulares, cultivos agrícolas, microorganismos, compuestos bioactivos, variables fisiológicas.

¹ Departamento de Biotecnología y Ciencias Alimentarias. Instituto Tecnológico de Sonora. 5 de Febrero 818 Sur, 85000, Ciudad Obregón, Sonora, México.

ABSTRACT

Microalgae are rich in bioactive compounds with biostimulant effects that, when applied to plants, stimulate their physiological processes. This study aimed to evaluate the biostimulant effect of *Chlorella sorokiniana* on tomato crops. Concentrations of 0.1, 0.5, and 1 % microalgal biomass were tested with three application methods: irrigation, foliar spray, and combined (irrigation and foliar). The main results showed that plant height and chlorophyll content were higher under soil application at 0.1 %. The greatest fruit weight (67 \pm 0.08 g) and yield (13.01 \pm 2.17 t·ha⁻¹) were obtained with soil application at 0.5 %. Likewise, the highest number of fruits was observed with soil application at 1 % (331 \pm 7.95), which was significantly higher ($p \le 0.05$) than the control (123 \pm 2.77). Leaf and root dry weights under foliar and combined applications at 0.1 and 0.5 % were significantly greater ($p \le 0.05$) than the control. Foliar nutrient analysis further showed that macronutrient levels remained within the "sufficient" range, while in the control, they were "low." These findings demonstrate that low concentrations of microalgal extract stimulate plant growth, nutrient uptake, and crop yield.

KEYWORDS:

Intracellular extracts, Crops, Microorganisms, Bioactive compounds, Physiological variables.

Introducción

En la actualidad, la creciente demanda de alimentos genera un reto en la búsqueda de nuevas tecnologías enfocadas en el mejoramiento de los cultivos, sumando objetivos como la conservación del agroecosistema y la obtención de productos libres de residuos tóxicos para los consumidores (Ronga et al., 2019). Este reto va dirigido a la innovación de productos agrícolas como los biofertilizantes y bioestimulantes del crecimiento vegetal (Supraja et al., 2020). Los bioestimulantes son descritos, de acuerdo a la regulación de productos fertilizantes de la Unión Europea, como "productos que contienen mezclas de sustancias o microorganismos, pudiendo ser aplicados en plantas o en la rizosfera con el fin de estimular los procesos naturales, la absorción de nutrientes, la eficiencia del uso de nutrientes, la tolerancia al estrés (biótico y abiótico) y, por lo tanto, la calidad de los cultivos". Esta normativa establece que los productos bioestimulantes vegetales deben estar sujetos a la normativa de comercialización de los fertilizantes, ya que se consideran un complemento de ellos, según el Reglamento (UE) 2019/1009.

Los bioestimulantes pueden poseer compuestos bioactivos como polisacáridos (Farid *et al.*, 2019), fitohormonas, vitaminas, pigmentos, aminoácidos y compuestos antimicrobianos con actividad biopesticida (Mutale-joan *et al.*, 2021). Entre los compuestos considerados como bioestimulantes se incluyen los hidrolizados proteicos, ácidos húmicos, microorganismos como bacterias, hongos y microalgas.

Las microalgas son microorganismos fotosintéticos, algunas especies marinas y otras de agua dulce, con diferente contenido de nutrientes, las cuales son utilizadas biotecnológicamente en la industria alimentaria, agrícola, farmacéutica y de combustibles (Ranglová et al., 2021). En las microalgas se han encontrado sustancias promotoras del crecimiento vegetal (fitohormonas) como auxinas, citoquininas, giberelinas y ácido

@ 000

abscísico. Stirk et al. (2013) realizaron un estudio sobre el contenido de fitohormonas en cepas de microalgas. Demostraron que la concentración total de auxinas era superior a la de citoquininas en todas las cepas analizadas. Las auxinas, ácido indol-3-acético (IAA) e indol-3-acetamida (IAM), estaban presentes en todas las cepas de microalgas; siempre, la concentración de IAA fué mayor que la de IAM. No se encontró correlación entre la concentración de fitohormonas y la fase de crecimiento de la microalga, tampoco con la acumulación de biomasa de las microalgas en el cultivo. Las fitohormonas se han encontrado presentes en las familias Charophyceae, Chlorophyceae, Trebouxiophyceae, y Ulvophyceae, predominando las especies de microalgas como: Chlorella vulgaris, Chlorella ellipsoidea, Chlorella infusionum, Chlorella sp, Dunaliella salina, Chlorella sorokiniana y Spirulina máxima (Mutale-Joan et al., 2020).

Se ha demostrado que la actividad bioestimuladora de las microalgas se asocia al contenido de metabolitos primarios como carbohidratos, proteínas y lípidos (Mutale-joan et al., 2020). Por otra parte, resulta atractivo que algunas microalgas pueden ser cultivadas en aguas residuales y pueden asimilar el nitrógeno, fósforo y carbono que contienen (Ferreira et al., 2021), lo que permite la reducción de costos en fuente de nutrientes, y disminución del impacto en el ambiente por la descarga de aguas residuales (Navarro-López et al., 2020). Esto, siempre y cuando se cumpla con criterios de inocuidad que no presentan riesgo sanitario para productos de agricultura alimentaria. En este caso en particular, al determinar la presencia de coliformes totales y coliformes fecales en el bioestimulante, su concentración es menor al establecido en la NOM-003-ECOL-1997.

Diversos autores mencionan que al combinar los extractos de microalgas con fertilizantes inorgánicos y orgánicos permitiría alcanzar una productividad agrícola sostenible. Existen tres formas de aplicación de los bioestimulantes en cultivos agrícolas: aplicación foliar, tratamiento directo a la semilla e inoculación al suelo, en los cuales se ha demostrado respuesta positiva en el aumento a la germinación, sistema radicular, rendimiento (Arioli et al., 2024), mayor contenido de clorofila y área foliar, así como también un aumento en la calidad de la fruta y vigor, resistencia elevada al estrés biótico y abiótico (Shukla et al., 2019).

El cultivo de tomate (*Solanum lycopersicum L.*), es uno de los más importantes a nivel mundial. Se puede realizar en distintos tipos de suelo, en cualquier temporada del año, dependiendo de la irrigación (Campobenedetto *et al.*, 2021). El tomate es un vegetal económico y disponible en todo el mundo, de esta manera contribuye a la seguridad alimentaria, debido a esto, y por sus cortos ciclos de cosecha, ha sido seleccionado como cultivo modelo en diversos estudios (Krid *et al.*, 2023).

Por lo anterior, el objetivo del presente trabajo fue evaluar los efectos agronómicos de la aplicación de un bioestimulante a base de microalga *Chlorella sorokiniana* en *Solanum lycopersicum* L, así mismo se planteó la siguiente hipótesis: la aplicación del bioestimulante basado en *Chlorella sorokiniana* incrementará significativamente el rendimiento agronómico y mejorará la calidad de los frutos del cultivo de tomate.

Material y Métodos

Producción de biomasa microalgal

Se utilizó una cepa de *Chlorella sorokiniana*, aislada en el Sur de Sonora, México y caracterizada previamente por el grupo de investigación. Se utilizó un reactor de capa fina en cascada con operación en continuo (tasa de renovación del 30 % d⁻¹) con un volumen

<u>@</u>08=

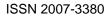
https://doi.org/10.15741/revbio.13.e1922

de operación de 20 L utilizando agua residual porcina como fuente de nutrientes, la cual fue caracterizada determinando la demanda química de oxígeno soluble (CODs) y N-NO₃-, N-NH₄+ y P-PO₄-3, de acuerdo al manual de métodos estandarizados de análisis (Federation & Aph, 2005), al inicio y durante 5 días del cultivo. Fue inoculado con el 10 % v/v de microalga. El cultivo se llevó a cabo en condiciones ambientales con T mínimas de 17±2 °C y máximas de 25±2 °C en el día y pH de 8.5 (se registraron 3 veces al día a las 9:00, 13:00 y 19:00 h). En el reservorio del cultivo se aplicó un flujo de aire de 66.4 L min⁻¹ (Gracida-Valdepeña *et al.*, 2020). Una vez que se alcanzó el estado estacionario del cultivo se realizaron cosechas diarias del cultivo, centrifugándose para obtener la biomasa y preparar las suspensiones del bioestimulante y determinar su composición bioquímica.

Preparación del bioestimulante

Una vez realizada la cosecha del cultivo en fresco, se determinó el peso seco de biomasa como base para la preparación de las diferentes concentraciones de bioestimulante, ya sea diluyendo o concentrando (por centrifugación) el cultivo, para ajustar concentraciones al 0.1, 0.5 y 1.0 % p/v en base de biomasa seca. Una vez preparado el volumen necesario de la suspensión de microalga a la concentración deseada, se procedió a someterlo a 5 ciclos de congelación/descongelación, a -120 °C y T ambiente, respectivamente, para romper las células y liberar los compuestos intracelulares, para su posterior aplicación en el cultivo de tomate.

Diseño de los tratamientos


Se utilizó un diseño completamente al azar con un arreglo factorial 3², más un testigo. Para el factor de aplicación se evaluaron tres formas: en suelo (directamente al sustrato), foliar (utilizando un aspersor) y mixto (foliar y suelo) en dosis de 150 ml para cada planta de tomate (*Solanum lycopersicum L.*). El segundo factor fue la concentración de biomasa seca en el bioestimulante (p/v): 0.1, 0.5 y 1.0 %. El diseño de los tratamientos consistió de 10 tratamientos con 10 repeticiones cada uno, definiéndose como T1: foliar 0.1 %; T2: foliar 0.5 %; T3: foliar 1 %; T4: suelo 0.1 %; T5: suelo 0.5 %; T6: suelo 1 %; T7: mixto 0.1 %; T8: mixto 0.5 %; T9: mixto 1 %; T10: testigo).

Manejo agronómico

La semilla de tomate tipo saladette, marca Kristen Seed® variedad "Río grande" con hábito de crecimiento determinado, fue sembrada en macetas de 10 litros de capacidad con sustrato "PRO-MIX®" a base de 70 % turba (peat moss) y 30 % perlita, bajo condiciones de invernadero experimental a 24 ± 2 °C y humedad relativa de 72 ± 3 %. Se utilizó una densidad de 100 plantas en un área de 6 x 8 m, con acomodo de 30 cm entre macetas, con una planta cada una, y distancia de 90 cm entre hileras. Las aplicaciones de los tratamientos con microalgas se realizaron en las etapas fenológicas de crecimiento vegetativo, floración y madurez del fruto.

Se aplicó fertilización convencional en dosis de 250-150-250 de N-P-K kg·ha⁻¹. Se utilizó urea al 46 %, nitrato de potasio (Ultra N-K-S) como fuente de nitrógeno y potasio en 5 aplicaciones: a los 20,40, 50, 60 y 80 días después de emergencia (dae); el fosfato diamónico (MAP técnico) como fuente de fósforo, en 3 aplicaciones: al momento de la emergencia y a los 40 y 60 dae. Además, se realizaron 3 aplicaciones de calcio (Ca(NO₃)₂)

https://doi.org/10.15741/revbio.13.e1922

y magnesio (MgSO₄), a dosis de 2 kg·ha⁻¹ cada uno y micronutrimentos (bluefeed micros®, en dosis recomendadas por el fabricante) una cada 10 días a partir de los primeros botones florales,

Mediciones fisiológicas

Durante el ciclo completo de la planta de tomate, se midió la altura de la planta (cm) y contenido de clorofila (unidades SPAD). La clorofila se determinó mediante el método Soil Plant Analysis Development (SPAD 502 Minolta Co., Osaka, Japón), Las mediciones se realizaron cada semana entre las 11:00 y 14:00 h del día. Se tomaron lecturas de cada réplica por tratamiento, obteniendo el valor promedio de tres puntos distintos tomados por hoja. La determinación de peso seco foliar y radicular se realizó por gravimetría, después de un proceso de secado de hojas, tallos y raíces a 60 °C durante 48 horas.

Análisis nutrimental del tejido foliar

El contenido de macro y micro-nutrimentos del tejido vegetal se determinó en las etapas de floración temprana y en la de maduración del fruto (Jones *et al.*, 1991). Para los análisis nutrimentales, la muestra (la cuarta hoja de la planta) se secó a 70 °C por 12 horas y se pulverizó en mortero. Posteriormente, se realizó una digestión ácida con 4 mL de H_2SO_4 y se colocó en el digestor HACH precalentado a 440 °C durante 1 minuto, posteriormente se le añadió 7 mL de H_2O_2 , al 50 % por 4 min. Las determinaciones del contenido, de los macro (%) y micro (ppm) nutrimentos se realizaron utilizando el kit de reactivos de HACH (Alcántar & Sandoval, 1999)

Análisis estadístico

Se aplicó un diseño completamente al azar con arreglo factorial 3x3 más un control. Los factores fueron la forma de aplicación y la concentración de biomasa en el bioestimulante (% p/v). Los datos se analizaron a través del test estadístico ANOVA factorial con prueba de comparaciones múltiples de medias de Tukey con nivel de significancia $p \le 0.05$. Para determinar los factores principales y la interacción de factores se empleó el programa estadístico IBM SPSS Statistics.

Resultados y Discusión

La microalga fue cultivada en agua residual porcina. A los 4 días de cultivo, se logró remover valores por encima del 90 % CODs y N-NO₃⁻ y de alrededor de 35 % para N-NH4⁺ y P-PO4⁻³ (Tabla 1). Una vez que se alcanzó el estado estacionario del cultivo se tuvo una concentración celular de 138±9.2 x 10⁶ cel mL⁻¹, equivalente a 1.9 g L⁻¹ de biomasa seca. Este peso seco se tomó como base para la preparación del bioestimulante y posteriormente se determinó su composición bioquímica (Tabla 2), mostrando niveles de proteína de hasta 200 μg mL⁻¹, lípidos 2700 μg mL⁻¹ y carbohidratos de hasta 700 μg mL⁻¹.

Este comportamiento en los niveles de remoción de nutrientes de aguas residuales por microalgas ha sido bien documentado. Los resultados obtenidos en el presente trabajo fueron similares a los reportados por (Gracida-Valdepeña *et al.*, 2020), utilizando la misma fuente de agua residual, misma cepa y mismo reactor. Así mismo, el cultivo de microalgas en aguas residuales las vuelve ricas en proteínas, gracias al nitrógeno presente en el agua.

Esto también significa que son una fuente prometedora de aminoácidos cruciales como el triptófano y la arginina, que las plantas utilizan para formar hormonas importantes. Además, se ha demostrado sistemáticamente que los polisacáridos pueden ayudar a las plantas a un mejor crecimiento y tolerancia al estrés (Ferreira et al., 2021), el contenido de lípidos de las microalgas impacta positivamente a las plantas, incluso pequeñas cantidades de ciertos esteroles, como el campesterol, son cruciales. Estos esteroles actúan como precursores de esteroides oxidados, conocidos colectivamente como brasinoesteroides, que son esencialmente hormonas de crecimiento vegetal. Los brasinoesteroides desempeñan un papel vital en el metabolismo vegetal, regulando procesos como la fotosíntesis, la división celular y la expansión celular (Rachidi et al., 2020), en un estudio relacionado, La Bella et al. (2021) demostraron que el uso de un bioestimulante foliar derivado de Chlorella vulgaris en hojas de lechuga condujo a un mayor peso de la planta. Se cree también, que este efecto positivo se debe al mayor contenido de pigmentos y proteínas aportado por el bioestimulante.

Tabla 1. Caracterización del agua residual porcina usada como medio de cultivo para microalgas

Tiempo (d)	CODs (mg L ⁻¹)	Remoción (%)	Amonio (mg L ⁻¹)	Remoción (%)	Fósforo (mg L ⁻¹)	Remoción (%)	Nitratos (mg L-1)	Remoción (%)
0	2372.22	0	302.55	0	274	0	30.654	0
1	552.22	49.73	207.11	12	104.33	62.04	0.823	97.3
2	1641	11.78	237.7	8	229.33	16.30	0.781	97.44
3	874.4	33.98	134.9	27	180.00	13.50	0.506	98.34
4	46.33	93.78	107.7	35	158.67	34.30	0.443	98.56
5	63.33	91.63	123.13	30	109.67	60.21	0.549	98.20

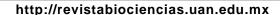

Fuente: Elaboración propia basada en resultados de este estudio.

Tabla 2. Contenido de proteínas, lípidos y carbohidratos (µg mL-1) en el biostimulante a 0.1, 0.5 y 1.0 % p/v de contenido de biomasa microalgal.

Proteínas				Lípido s		Carbohidratos		
0.1%	0.5%	1.0%	0.1%	0.5%	1.0%	0.1%	0.5%	1.0%
204	1019	2038	269.69	1325	2700±	71.62	350	710
±4.9	±25	±246	± 9.06	±51	105	\pm 3.8	±25	±55

Fuente: Elaboración propia basada en resultados de este estudio.

Por otra parte, se evaluó el efecto de cada uno de los factores, forma de aplicación y concentración del bioestimulante, así como su interacción en el cultivo de tomate. Se tiene que el comportamiento de los tratamientos, en el factor de la concentración, se observa un patrón similar en los 3 formas de aplicación: foliar, suelo y mixto. En las variables clorofila, peso seco foliar y rendimiento solo presentaron diferencia significativa ($p \le 0.05$) los tratamientos 0.1 % contra 1.0 % y 0.5 %, alcanzando los mejores resultados éste último tratamiento. Para las variables de altura, peso seco radicular y peso de frutos, todas las concentraciones evaluadas presentaron diferencia significativa, a excepción de las

concentraciones 1.0 % contra 0.1 %. Es decir, el factor de concentración tiene un efecto significativo en la mayoría de las variables evaluadas, principalmente en sus niveles de 0.5 % y 1.0 % con los mejores resultados. Así mismo, el análisis del factor forma de aplicación se observa que, para la concentración 0.5 %, se presenta diferencia significativa ($p \le 0.05$) en todas las variables, excepto para el peso seco foliar y peso seco radicular que no hay diferencia entre la aplicación al suelo y mixta. Este comportamiento se registra también para las concentraciones de 0.1 % y 1.0 % para las variables altura, peso seco foliar y peso seco radicular. Es decir, para la mayoría de las variables, el factor de forma de aplicación tiene un efecto significativo, donde la aplicación foliar fue significativamente menor a la aplicación en suelo y mixta. Al analizar la interacción de los factores, la interacción fue significativamente diferente ($p \le 0.05$) para todas las variables evaluadas, a excepción de la clorofila. Es decir, el efecto de los factores se maximiza al evaluar la interacción, dando los mejores resultados la aplicación foliar y mixta a concentraciones al 0.5 % y al 1.0 %.

Complementando lo anterior, al evaluar los diferentes tratamientos, se observó el efecto de la aplicación del bioestimulante con microalga en el cultivo de tomate. Se observa que en la altura de la planta (Figura 1), el T1 (81.5 \pm 2.1 cm) y T2 (81.6 \pm 5.7 cm) obtuvieron las mayores alturas durante las primeras tres etapas fenológicas (crecimiento vegetativo, floración y cuaje del fruto), siendo significativamente diferentes ($p \le 0.05$) al testigo (70.5 ± 3.97 cm). Durante la etapa de maduración del fruto, las mayores alturas de planta se presentaron en T4, T7 y T8 con 111.1 \pm 4.51 cm, 110.2 \pm 4.49 cm y 109.9 \pm 2.73 cm, respectivamente, siendo significativamente mayores ($p \le 0.05$) al testigo (94.6 \pm 6.74 cm). Así mismo, en el contenido de clorofila expresado en unidades SPAD (Figura 2), T4 presentó diferencias significativas ($p \le 0.05$) contra el testigo con valores de 42.32 ± 3.2 en la etapa de floración. Sin embargo, en la semana 15 y semana 24, todos los tratamientos fueron mayores al testigo presentando diferencias significativas ($p \le 0.05$). La evaluación del nivel de clorofila, en unidades SPAD, es un indicador confiable de la actividad fotosintética, el contenido de nitrógeno y clorofila de las hojas. El aumento de clorofila en las plantas se debe a una correcta asimilación de nitrógeno y fósforo, esto indica que las plantas recibieron una adecuada nutrición (Weisser et al., 2024). Se han reportado resultados favorables en plantas que recibieron nutrientes cómo nitrógeno y fósforo por parte de algas (Gitau et al., 2022).

Estos resultados nos indican que la aplicación del bioestimulante a base de microalga C. sorokiniana posee efectos benéficos sobre el desarrollo vegetativo del cultivo. Esto coincide con otros autores que han observado una mejora significativa en el crecimiento de las plantas de tomate al aplicar un bioestimulante a base de C. vulgaris a concentración de 1 mg L-1 (Barone et al., 2019). Por otra parte, se ha encontrado que las aplicaciones foliares de bioestimulantes con microalgas permiten una absorción más rápida de nutrientes y una eficiente corrección de deficiencias nutrimentales en comparación con las aplicaciones directas al suelo (Garcia-Gonzalez & Sommerfeld, 2016). Así mismo, pueden influir en procesos metabólicos como la respiración celular, la fotosíntesis, y la síntesis de hormonas reguladoras del crecimiento vegetal, resultando en una elongación y dominancia apical. También, la aplicación directa al suelo puede mejorar la disponibilidad y asimilación de nutrientes por los cultivos, mejorar la retención de agua del suelo, aumento en el contenido de antioxidantes, mejora en el metabolismo celular y aumento de clorofila en hojas (Ronga et al., 2019); sin embargo, en el presente trabajo se observa que la aplicación mixta, es decir, en suelo y foliar simultáneamente, mostraron los mejores resultados, potenciando tanto el efecto de la aplicación foliar como la aplicación al suelo.

Resultados similares a la presente investigación fueron obtenidos por Mostafa et al. (2024) al aplicar bioestimulante de microalgas a base de C. vulgaris y Spirulina platensis en plantas de tomate, incrementando el contenido de clorofila a en más de un 70 % en comparación con el control. También, Calderón-Arias et al. (2024) mencionan que valores superiores a 31 unidades SPAD resultan adecuados para el cultivo de tomate, lo que indica que los niveles de clorofila encontrados en el presente trabajo fueron adecuados, ya que oscilan entre 38-44 unidades SPAD. La capacidad fotosintética de las hojas se debe al contenido de clorofila de la planta, así como a la salud de la misma. La clorofila es el principal constituyente para que se lleve a cabo la fotosíntesis, brindándoles color verde característico y, a su vez, les permite absorber energía luminosa para la fotosíntesis (Zulkarnaini et al., 2019).

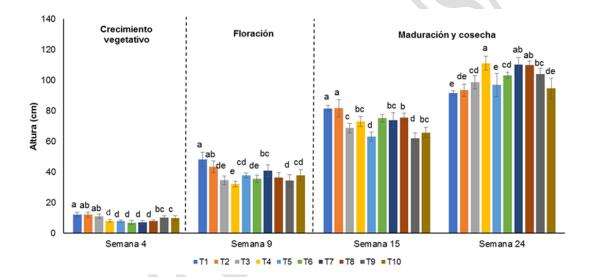


Figura 1. Altura de planta en las diferentes etapas fenológicas de la planta de tomate. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

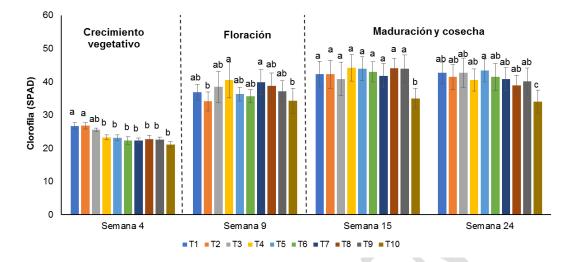


Figura 2. Índice de clorofila (unidades SPAD) en diferentes etapas fenológicas de la planta de tomate en los diferentes tratamientos. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

En la Figura 3, se muestran los resultados de peso de los frutos de tomate para los diferentes tratamientos aplicados. Se observa que, para los tratamientos de aplicación foliar y en suelo, se tuvieron mejores efectos que la aplicación mixta, sin presentar diferencia significativa, con una tendencia a incrementar el peso de los frutos al incrementar la concentración de microalga en el bioestimulante del 0.1 al 0.5 %; sin embargo, al 1 % se observa una disminución en el efecto. Con respecto al mejor tratamiento, T5 (67 g ± 0.08) fue significativamente ($p \le 0.05$) mayor en el peso del fruto comparado con el testigo (44.3 ± 3.60 g), esto indica que hubo una mejor asimilación y efecto de los extractos de microalgas aplicados al suelo. Así mismo, en la Fig. 4 se muestran los resultados de rendimiento, obteniendo los valores más altos en T5 (13.01 ± 2.17 t·ha⁻¹) con diferencias significativas (p ≤ 0.05) contra el testigo (5.47 ± 0.63 t·ha⁻¹) y los tratamientos aplicados al suelo (T1, T2 y T3). En el análisis de rendimiento se debe tomar en cuenta algunos componentes de la planta, en el caso del tomate son el número de frutos por planta y el peso de fruto. Esto indica que hubo una mejor asimilación y efecto de los extractos de microalgas aplicados al suelo, a la concentración media que se maneja en el presente estudio, siendo consistente con los resultados de peso del fruto. Esto se atribuye a que al aplicar sustancias estimulantes directamente a la hoja, entran por los estomas y se incorporan a los procesos metabólicos de la planta obteniendo así aumentos en el área foliar (Battacharyya et al., 2015). También, se ha demostrado que las microalgas aumentan la absorción y acumulación de nutrimentos (N, P, K, Ca, etc.) en las plantas (Mostafa et al., 2024), lo cual puede tener efectos positivos en el peso de los frutos, promoviendo la disminución de tomate hueco o bufado (Weisser et al., 2024), término que se utiliza para definir un tomate que le falta la materia gelatinosa que envuelve la zona de la semilla.

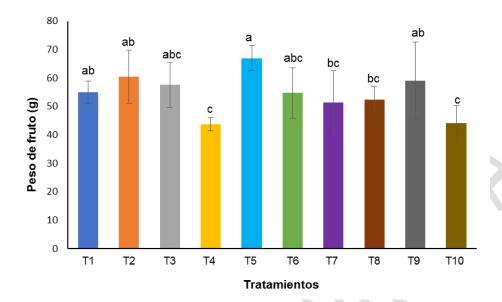


Figura 3. Peso del fruto de tomate en los tratamientos con bioestimulante. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

Con la microalga *Nannochloropsis oculata* se obtuvieron efectos similares en frutos de tomate, obteniendo un mayor peso del fruto en comparación al uso de fertilizantes convencionales inorgánicos (Coppens *et al.*, 2016). Así mismo, sugieren utilizar una aplicación de fertilizantes convencionales como fuente de macronutrientes adicionada con microalgas, como complemento, para obtener frutos de alta calidad, con rendimientos satisfactorios, ya que las microalgas estimulan la captación de nitrógeno para el crecimiento de las plantas y así mejoran el valor del mercado de los productos. Los polisacáridos de las microalgas pueden servir como bioestimulantes para mejorar la absorción de nutrientes, el rendimiento, crecimiento y el estado fisiológico de las plantas a través de las raíces (Chanda *et al.*, 2019).

Por otra parte, en la Fig. 5 y Fig. 6 se muestran los resultados del peso seco foliar y el peso seco radicular, respectivamente. Los valores más altos se presentaron en las aplicaciones al suelo y mixto, incrementando los pesos secos al incrementar la concentración de microalga en el bioestimulante, los cuales fueron diferentes significativamente ($p \le 0.05$) al testigo. El mismo comportamiento se presentó en la aplicación foliar, sobresaliendo la concentración de 0.5 %. Las plantas que tuvieron aplicaciones foliares se observaron más altas hasta la semana 15, posteriormente, sobresalieron en altura los tratamientos en aplicación suelo y mixto, mostrando que están relacionadas con el peso seco foliar y radicular registrados. Resultados similares a los observados en el estudio de (Kumari *et al.*, 2011), quienes observaron un mayor crecimiento de las plantas al aumentar las concentraciones de extractos de algas. Mientras que Hernández-Herrera *et al.* (2014) observaron plantas de menor longitud y brotes en aspersiones foliares de extractos de algas en concentraciones superiores al 0.4 %.

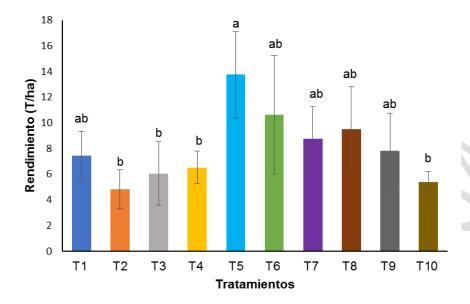


Figura 4. Rendimiento (ton ha⁻¹) del cultivo de tomate en los tratamientos con bioestimulante. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

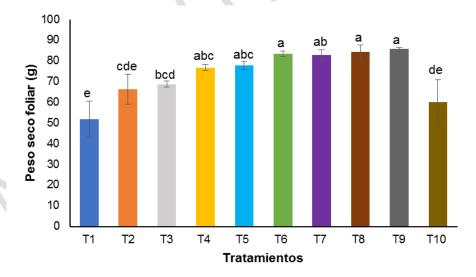


Figura 5. Peso seco foliar del cultivo de tomate en los tratamientos con bioestimulante. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

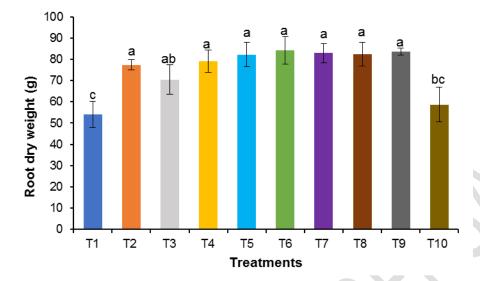


Figura 6. Peso seco radicular del cultivo de tomate en los tratamientos con bioestimulante. Columnas con letras diferentes representa diferencia significativa ($p \le 0.05$). Fuente: Elaboración propia basada en resultados de este estudio.

Los resultados anteriores coinciden con la investigación de Garcia-Gonzalez & Sommerfeld, (2016), en donde el número de raíces laterales tuvo variación en el rango de concentración del extracto con microalga *Acutodesmus dimorphus*, mostrando una relación directa entre la cantidad de raíces y la concentración de extracto. Esto es un resultado benéfico para las plantas, ya que a mayor número de raíces, mayor es la capacidad de las plantas para la absorción de nutrientes y agua disponible.

En el presente estudio se evaluó el efecto de las dosis aplicadas de bioestimulante. Se demostró que bajas concentraciones, tanto como al 0.1 % (p/v), y mejor entre 0.5 % y 1.0 %, de biomasa microalgal tienen un impacto mayor en el desarrollo de las plantas. Minaoui et al. (2024) demostraron un efecto dependiente de la dosis para todos los tratamientos, la dosis del 25 % presentó el efecto bioestimulante más eficaz; por el contrario, la dosis más alta (50 %) afectó negativamente el proceso de germinación. Diversos autores obtuvieron resultados similares en sus estudios del efecto de las dosis de extractos de algas aplicadas en los cultivos agrícolas como trigo, rábano y tomate (Hernández-Herrera et al., 2014; Kumar & Sahoo, 2011; Godlewska et al., 2019). Esto podría deberse a un desequilibrio en las fitohormonas y a una alteración en la homeostasis de los elementos minerales. Además, una aplicación excesiva puede provocar una respuesta negativa en las plantas, lo que podría provocar fitotoxicidad (Gharib et al., 2024; Ferreira et al., 2021). Otros autores mencionan que altas concentraciones de extractos de microalgas mostraron el menor contenido de fenoles y flavonoides, compuestos con actividad antioxidante que podrían tener efecto positivo en las el correcto desarrollo de las plantas (Chanda et al., 2019). Sin embargo, aún no se ha explorado a fondo el modo de acción de estos compuestos (Mantzorou et al., 2018)

en el desarrollo de las plantas, ya que no se estudia el efecto de un solo biocompuesto en específico, sino una interacción de los compuestos presentes en la biomasa de microalgas, haciendo más complejo el estudio. Por lo anterior, se asume que al incrementarse la concentración de biomasa en el bioestimulante formulado, se presenta

ISSN 2007-3380

https://doi.org/10.15741/revbio.13.e1922

cierto antagonismo entre los compuestos presentes causando cierto grado de inhibición en el desarrollo de las plantas, como fue en algunas variables evaluadas en el presente estudio.

De igual manera, se sabe que la nutrición de la planta es un factor clave para su desarrollo. En este sentido, en la Tabla 3 se muestran los contenidos foliares de nitrógeno (N), fósforo (P), potasio (K), calcio (Ca) y magnesio (Mg) por tratamiento en la etapa de floración de la planta. Los valores de N y P, se encuentran dentro de los rangos normales establecidos para el cultivo de tomate según Jones *et al.* (1991), quienes plantean como rangos "suficiente" entre 2.50-2.99 %, 3.0-3.9 % y 4.0-4.99 % de N, P y K, respectivamente.

En el contenido de nitrógeno, todos los tratamientos muestran valores en el rango de "suficiente". Lo contrario se tuvo en el contenido de fósforo, que los valores más bajos se obtuvieron en el T7 (0.64 %) y en el testigo (0.74 %). Respecto a los valores de K, todos los tratamientos se encuentran en el rango de "Alto", excepto el testigo. Lo anterior se puede atribuir a que las microalgas estimulan la absorción de micronutrimentos, principalmente de K, Ca y Cu en las hojas de las plantas. Ca y Mg estuvieron dentro de los rangos "suficiente" (1.5 - 2.4 %) y (0.32 - 0.8 %), respectivamente. Así mismo, se determinó el contenido foliar de micronutrimentos (Tabla 3), en algunos tratamientos, se tuvo valores "altos" (>300 ppm) de fierro, de acuerdo con los rangos establecidos anteriormente, esto se puede deber a la gran capacidad de la microalgas para absorber Fe, lo que se ve reflejado en los valores altos de este nutrimento (Mantzorou et al., 2018). Los valores de zinc obtenidos en los muestreos fueron "bajos" (entre 8 y 14 ppm), este comportamiento puede atribuirse a un efecto antagónico Fe/Zn, en donde el Fe fue proporcionado en las aplicaciones foliares de los micronutrimentos y en las aplicaciones de los tratamientos con microalgas; por lo que, al incrementar las dosis de hierro se genera competencia entre Fe y Zn en su absorción y transporte dentro de las células vegetales. En este sentido, el hierro aplicado de forma foliar está más disponible para movilizarse por la planta hacia el fruto, lo que limita la absorción de zinc debido a que estos minerales utilizan los mismos transportadores y tiene una baja movilidad en la planta (Félix et al., 2024).

En el estado de maduración y cosecha, los resultados para el análisis de macro nutrimentos en el tejido foliar muestran el mismo contenido de N y P al inicio y al final del ciclo de la planta (Tabla 4), por lo que permanecen dentro de los estándares "suficientes". Por el contrario, el contenido de K disminuyó, pasando del estándar "alto" a "suficiente", en los tratamientos con microalgas, mientras que el testigo disminuyó 8.33 %. El mismo comportamiento se observó en el contenido de Ca y Mg. Este déficit puede deberse a que la planta sufrió un estrés por bajas temperaturas (<15 °C) durante la etapa de maduración. Los micronutrimentos mostraron el mismo comportamiento que en la etapa de floración antes mencionada.

Tabla 3. Contenido foliar de macronutrientes (N, P, K, Ca, Mg en porcentaje) y micronutrimentos (Fe, Cu and Zn en ppm) en la hoja indicadora de la floración temprana.

Tratamiento	N	Р	K	Ca	Mg	Fe	Cu	Zn
Tratamiento			(%)				(ppm)	
T1	3.94	1.19	5.60	1.67	0.35	180	5.80	10
T2	3.15	0.80	5.70	2.00	0.45	230	4.30	10
Т3	3.15	1.10	5.30	1.83	0.47	150	3.20	10
T4	3.97	0.79	5.20	1.91	0.46	211	3.00	8
T5	3.60	0.82	5.70	1.62	0.88	145	4.20	14
T6	3.97	0.73	5.00	1.86	0.45	274	6.70	12
T7	3.67	0.64	5.90	1.51	0.65	346	8.90	10
Т8	3.97	0.75	5.30	1.56	0.46	359	6.00	12
Т9	3.96	1.05	5.60	1.66	0.56	346	8.90	10
T10	2.52	0.74	4.80	1.32	0.44	314	5.50	8

Fuente: Elaboración propia basada en resultados de este estudio.

Tabla 4. Contenido foliar de macronutrientes (N, P, K, Ca, Mg en porcentaje) y micronutrimentos (Fe, Cu and Zn en ppm) de la hoja indicadora de maduración y cosecha.

Tratamiento	N	Р	(%)	Са	Mg	Fe	Cu (ppm)	Zn
T1	3.45	0.69	4.3	1.21	0.14	137	7.4	8
	5.45	0.03	7.5	1.21	0.14	131	7.4	O
T2	3.1	0.89	4.2	1.13	0.6	218	7.4	7
Т3	3.2	0.69	4.7	1.3	0.47	180	7.6	7
T4	2.99	0.55	5.3	1.47	0.28	255	11	7
T5	2.97	0.59	5.1	1.01	0.67	136	8.4	8
T6	3.45	0.57	5.4	1.69	0.66	206	5.8	10
T7	3.76	0.9	5.4	1.78	0.34	152	9.6	7
Т8	3.66	0.94	5.5	1.02	0.55	122	9.6	10
Т9	3.4	0.7	5.4	1.73	0.44	136	8.8	10
T10	2.99	0.53	4.4	1.11	0.59	126	6	8

Fuente: Elaboración propia basada en resultados de este estudio.

https://doi.org/10.15741/revbio.13.e1922

Conclusión

Finalmente, se observa que en las variables de crecimiento se tiene un efecto positivo marcado por los tratamientos con aplicación de microalgas al suelo, incidiendo favorablemente en el tamaño y peso de los frutos obtenidos, con ello se demuestra que una pequeña concentración de extracto de microalga aplicado al cultivo, estimula tanto el crecimiento de la planta como el rendimiento. El contenido de micro y macro nutrimentos permanecieron en los estándares suficientes después de las aplicaciones de microalgas, por lo que también se le atribuye una estimulación a la asimilación de nutrientes por parte de la planta.

Contribución de los autores

"Conceptualización del trabajo, Y. K.P. V, G. U. M. y M. A. G. C.; desarrollo de la metodología, Y. K.P. V y C. A. D. Q; manejo de software, Y. K.P. V y A.M. R. M.; validación experimental, Y. K.P. V., G. U. M. y M. A. G. C; análisis de resultados, Y. K.P. V y A.M. R. M.; Manejo de datos, Y. K.P. V y C. A. D. Q.; escritura y preparación del manuscrito, Y. K.P. V y G. U. M..; redacción, revisión y edición, Y. K.P. V, G. U. M., P. G. M., y C. A. D. Q; administrador de proyectos, G. U. M.; adquisición de fondos, G. U. M. "Todos los autores de este manuscrito han leído y aceptado la versión publicada del mismo."

Financiamiento

"Esta investigación fue financiada por el CONAHCYT, con la beca otorgada (852858) para estudios de doctorado de Y. K Padilla- Valle y el financiamiento al proyecto CF-2023-G1278. Y por el Programa de Fortalecimiento a la Investigación por el financiamiento al proyecto PROFAPI-2023-0485.

Conflicto de interés

"Los autores declaran no tener conflicto de interés".

Referencias

- Alcántar González, G. & Sandoval Villa G. (1999). Manual de análisis químico de tejido vegetal: Guía de muestreo, preparación, análisis e interpretación. México, D. F. Sociedad Mexicana de la Ciencia del Suelo. https://www.sidalc.net/search/Record/KOHA-OAI-TEST:23162/Description
- American Public Health Association. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American public health association.
- Arioli, T., Mattner, S. W., Islam, M. T., Tran, T. L. C., Weisser, M., Winberg, P., & Cahill, D. M. (2024). Applications of seaweed extracts in agriculture: An Australian perspective. *Journal of Applied Phycology*, 36(2), 713-726. https://doi.org/10.1007/s10811-023-03120-x
- Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A. R., Giuffrida, F., & Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. *Journal of Applied Phycology*, 31(1), 465-470. https://doi.org/10.1007/s10811-018-1518-y
- Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39-48. https://doi.org/10.1016/j.scienta.2015.09.012
 Calderón-Arias, C., Calle-Carmen, K., Carreño-Farfán, C., Estela-Campos, C., Carbajal-Gamarra, F. M., Barturén-Quispe, A.
- Calderón-Arias, C., Calle-Carmen, K., Carreño-Farfán, C., Estela-Campos, C., Carbajal-Gamarra, F. M., Barturén-Quispe, A. P., Chirinos-Cuadros, H. Y., & Sánchez-Purihuamán, M. N. (2024). Efecto de bacterias rizosféricas de Prosopis limensis Benth. En el desarrollo de Solanum lycopersicum L. bajo estrés salino. *Bioagro*, 36(1), 49-60. https://doi.org/10.51372/bioagro361.5

ISSN 2007-3380

https://doi.org/10.15741/revbio.13.e1922

- Campobenedetto, C., Agliassa, C., Mannino, G., Vigliante, I., Contartese, V., Secchi, F., & Bertea, C. M. (2021). A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigates Water Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture, 11(6), 557. https://doi.org/10.3390/agriculture1106055
- Chanda, M., Merghoub, N., & EL Arroussi, H. (2019). Microalgae polysaccharides: The new sustainable bioactive products for the development of plant bio-stimulants? World Journal of Microbiology and Biotechnology, 35(11), 177. https://doi.org/10.1007/s11274-019-2745-3
- Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367-2377. https://doi.org/10.1007/s10811-015-0775-
- Farid, R., Mutale-joan, C., Redouane, B., Mernissi Najib, E., Abderahime, A., Laila, S., & Arroussi Hicham, E. (2019). Effect of Microalgae Polysaccharides on Biochemical and Metabolomics Pathways Related to Plant Defense in Solanum lycopersicum. Applied Biochemistry and Biotechnology, 188(1), 225-240. https://doi.org/10.1007/s12010-018-2916-
- Federation, W. E., & Aph Association. (2025). Standard methods for the examination of water and wastewater. (Vol. 21). Association (APHA). Washingtong DC, American Public Health USA. https://books.google.com.mx/books/about/Standard_Methods_for_the_Examination_of.html?id=buTn1rmfSl4C&re_ dir esc=v
- Félix, J. W., Sánchez-Chávez, E., Tosquy-Valle, O., Preciado-Rangel, P., & Márguez-Quiroz, C. (2024). Biofortificación de Frijol (Phaseolus vulgaris L.) Variedad Verdín con Quelato y Sulfato de Hierro. Revista Terra Latinoamericana, 42. https://doi.org/10.28940/terra.v42i0.1831
- Ferreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., & Gouveia, L. (2021). Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environmental Advances, 4, 100062. https://doi.org/10.1016/j.envadv.2021.100062
- Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28(2), 1051-1061. https://doi.org/10.1007/s10811-015-062
- Gharib, F. A. E. L., Osama, K., Sattar, A. M. A. E., & Ahmed, E. Z. (2024). Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Scientific Reports, 14(1), 1398. https://doi.org/10.1038/s41598-023-50040-4
- Gitau, M. M., Farkas, A., Ördög, V., & Maróti, G. (2022). Evaluation of the biostimulant effects of two Chlorophyta microalgae tomato (Solanum lycopersicum). Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2022.132689
- Godlewska, K., Michalak, I., Pacyga, P., Baśladyńska, S., & Chojnacka, K. (2019). Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World Journal of Microbiology and Biotechnology, 35(6), 80. https://doi.org/10.1007/s11274-019-2653-6
- Gracida-Valdepeña, M. L., Navarro-Aguirre, F., Herrera-Acosta, K., Ulloa-Mercado, G., Meza-Escalante, E., Plascencia-Jatomea, R., González-Meza, G., & Serrano-Palacios, D. (2020). Nutrient removal from swine wastewater using a thermotolerant strain of Chlorella sp. Grown under outdoor conditions. Journal of Chemical Technology & Biotechnology, 95(4), 1243-1249. https://doi.org/10.1002/jctb.6313
- Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619-628. https://doi.org/10.1007/s10811-013-0078-4
- Jones, J. J., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Pp 213. https://www.cabidigitallibrary.org/doi/full/10.5555/19921969819
- Krid, A., El Hallabi, M., Ennoury, A., Nhhala, N., Aberkani, K., Nhiri, M., & Zerrouk, M. H. (2023). The potential of seaweed extracts as a biostimulant for improving salt stress tolerance of Solanum lycopersicum L. South African Journal of Botany, 161, 305-316. https://doi.org/10.1016/j.sajb.2023.08.020
- Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251-255. https://doi.org/10.1007/s10811-011-9660-9
- Kumari, R., Kaur, I., & Bhatnagar, A. K. (2011). Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. *Journal of Applied Phycology*, 23(3), 623-633. https://doi.org/10.1007/s10811-011-9651-x
- La Bella, E., Baglieri, A., Rovetto, E. I., Stevanato, P., & Puglisi, I. (2021). Foliar Spray Application of Chlorella vulgaris Extract: Effect on the Growth of Lettuce Seedlings. Agronomy, 11(2), 308. https://doi.org/10.3390/agronomy11020308
- Mantzorou, A., Navakoudis, E., Paschalidis, K., & Ververidis, F. (2018). Microalgae: A potential tool for remediating aquatic environments from toxic metals. International Journal of Environmental Science and Technology, 15(8), 1815-1830. https://doi.org/10.1007/s13762-018-1783-y
- Minaoui, F., Hakkoum, Z., Chabili, A., Douma, M., Mouhri, K., & Loudiki, M. (2024). Biostimulant effect of green soil microalgae Chlorella vulgaris suspensions on germination and growth of wheat (Triticum aestivum var. Achtar) and soil fertility. Algal Research, 82, 103655. https://doi.org/10.1016/j.algal.2024.1036
- Mostafa, M. M., Hammad, D. M., Reda, M. M., & El-Sayed, A. E.-K. B. (2024). Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomato (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Conversion and Biorefinery, 14(17), 21181-21191. https://doi.org/10.1007/s13399-023-04460-x
- Mutale-joan, C., Rachidi, F., Mohamed, H. A., Mernissi, N. E., Aasfar, A., Barakate, M., Mohammed, D., Sbabou, L., & Arroussi, H. E. (2021). Microalgae-cyanobacteria-based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. Journal of Applied Phycology, 33(6), 3779-3795. https://doi.org/10.1007/s10811-021-02559-0
 Mutale-joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & Hicham, E. A. (2020). Screening
- of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile

Biociencias

http://revistabiociencias.uan.edu.mx

ISSN 2007-3380

https://doi.org/10.15741/revbio.13.e1922

- of Solanum lycopersicum L. Scientific Reports, 10(1), 2820. https://doi.org/10.1038/s41598-020-59840-4
- Navarro-López, E., Ruíz-Nieto, A., Ferreira, A., Acién, F. G., & Gouveia, L. (2020). Biostimulant Potential of Scenedesmus obliquus Grown in Brewery Wastewater. *Molecules*, 25(3), 664. https://doi.org/10.3390/molecules25030664
- Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. *Biotechnology Reports*, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426
- Ranglová, K., Lakatos, G. E., Câmara Manoel, J. A., Grivalský, T., Suárez Estrella, F., Acién Fernández, F. G., Molnár, Z., Ördög, V., & Masojídek, J. (2021). Growth, biostimulant and biopesticide activity of the MACC-1 *Chlorella* strain cultivated outdoors in inorganic medium and wastewater. *Algal Research*, 53, 102136. https://doi.org/10.1016/j.algal.2020.102136
- Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions. *Agronomy*, *9*(4), 192. https://doi.org/10.3390/agronomy9040192
- Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T., & Prithiviraj, B. (2019). Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00655
- Stirk, W. A., Ördög, V., Novák, O., Rolčík, J., Strnad, M., Bálint, P., & van Staden, J. (2013). Auxin and cytokinin relationships in 24 microalgal strains1. *Journal of Phycology*, 49(3), 459-467. https://doi.org/10.1111/jpy.12061
- Supraja, K. V., Behera, B., & Balasubramanian, P. (2020). Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. *Industrial Crops and Products*, 151, 112453. https://doi.org/10.1016/j.indcrop.2020.112453
- Weisser, M., Mattner, S. W., Southam-Rogers, L., Hepworth, G., & Arioli, T. (2024). Effect of a Fortified Biostimulant Extract on Tomato Plant Productivity, Physiology, and Growing Media Properties. *Plants*, 13(1), 4. https://doi.org/10.3390/plants13010004
- Zulkarnaini, Z. M., Sakimin, S. Z., Mohamed, M. T. M., & Jaafar, H. Z. E. (2019). Relationship between chlorophyll content and soil plant analytical development values in two cultivars of fig (Ficus carica L.) as brassinolide effect at an open field. IOP Conference Series: Earth and Environmental Science, 250(1), 012025. https://doi.org/10.1088/1755-1315/250/1/012025