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A B S T R A C T  
The presence and dispersion of potentially toxic elements from 
mining waste can affect the quality of soils used in agricultural 
systems. In the present work, the presence of heavy metals 
in soils, water, and forage from agricultural systems was 
evaluated, as well as the nutritional quality of the latter in the 
community of Valdecañas, Fresnillo, Zacatecas. Heavy metal 
concentrations in the samples were determined using flame 
atomic absorption spectrophotometry, and the nutritional 
quality of the forage was assessed through proximal analysis. 
Maximum concentrations (μg L-1) of lead (34.6) and cadmium 
(4.25) were determined in the analyzed water samples, 
exceeding the limits established by national and international 
regulations, with water bodies in the community being the 
most affected. In the evaluated soils, maximum concentrations 
(mg kg-1) of 43.57 for lead, 21.56 for chromium, and 1.62 for 
cadmium were determined, associated with biomagnification 
processes in areas used for grazing and as watering troughs 
near the community's pond. Proximal analysis indicated 
average values of 14 % crude protein, 37.5 % neutral detergent 
fiber, and 34 % acid detergent fiber, with chromium present in 
100 % of the samples, with a maximum concentration of 41.7 
mg kg-1. The results reflect the importance of studying the 
presence and mobility of heavy metals in agricultural areas 
near mining activities, as well as evaluating the quality of food 
products produced in the area.
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metals.
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Impact of mining in soil, water and forage /
Impacto de la minería en suelo, agua y forraje

R E S U M E N

La presencia y dispersión de elementos potencialmente tóxicos provenientes de residuos 
mineros puede afectar la calidad de los suelos utilizados en sistemas agropecuarios. En el presente 
trabajo se evaluó la presencia de metales pesados en suelo, agua y forrajes de uso agropecuario, 
así como la calidad nutricional de estos últimos en la comunidad de Valdecañas, Fresnillo, 
Zacatecas. Las concentraciones de metales pesados en las muestras fueron determinadas 
mediante espectrofotometría de absorción atómica de flama, asimismo, la calidad nutricional 
del forraje se determinó mediante un análisis proximal. En las muestras de agua analizadas se 
determinaron concentraciones máximas (µg L-1) de plomo de 34.6 y cadmio de 4.25, los cuales 
superan los límites permisibles establecidos en la normativa nacional e internacional, siendo 
los cuerpos de agua cercanos a la comunidad los más afectados. En los suelos evaluados se 
determinaron concentraciones máximas (mg kg-1) de 43.57 para plomo, 21.56 para cromo y 1.62 
para cadmio, asociadas a procesos de biomagnificación en áreas usadas para pastoreo y como 
abrevaderos cerca del estanque de la comunidad. El análisis proximal indicó valores promedio 
de 14 % de proteína cruda, 37.5 % de fibra detergente neutra y 34 % de fibra detergente acida, 
con presencia de cromo en el 100 % de las muestras y una concentración máxima de 41.7 
mg kg-1. Los resultados reflejan la importancia de estudiar la presencia y movilidad de metales 
pesados en zonas agropecuarias cercanas a actividades mineras, así como evaluar la calidad de 
los productos alimenticios generados en la zona.

PA L A B R A S  C L AV E :  Actividades agropecuarias, contaminación, minería, metales.

Introduction

Mining is one of the most important economic activities in Mexico, and the state of 
Zacatecas is among the country’s main mining regions (SE, 2016c). The state is divided into 17 
mining areas based on location and mineral types. One of the most important is the Fresnillo 
Mining District (FMD), located in the municipality of the same name, recognized as one of the 
largest producers of silver and gold both nationally and internationally (SGM, 2020). The FMD is 
near rural communities such as Valdecañas, which has 1,670 residents involved in farming and 
livestock activities, including growing maize and beans, as well as raising and selling livestock 
(INEGI, 2010; SGM, 2012).

Mining and metallurgical activities can cause negative environmental impacts, mainly 
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due to waste generated after extraction processes. These impacts include soil, surface water, 
groundwater, and vegetation contamination caused by heavy metals and toxic elements like 
arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), lead (Pb), and 
zinc (Zn). These elements can accumulate in the soil and be absorbed by plants through various 
mechanisms, risking food safety through biomagnification in food chains (Gómez-Álvarez et al., 
2007; Khan et al., 2016; Aznar-Sánchez et al., 2018; Zhu et al., 2019). Consequently, the quality 
of soil, water, and forage in agricultural areas near mining sites is an increasing concern, as the 
presence and mobility of toxic elements may impact agriculture, crops, livestock, and human 
health (Hu et al., 2017; Vetrimurugan et al., 2019; Archundia et al., 2024). Previous studies have 
found As, Pb, Zn, and Cu in agricultural soils, irrigation water, stream sediments, and forage in 
mining regions of Mexican states such as San Luis Potosí, Sonora, Hidalgo, Tlaxcala, Puebla, 
Guanajuato, and Baja California Sur (Razo et al., 2004; Ramos-Arroyo & Siebe-Grabach, 2006; 
García-Gutiérrez & Rodríguez-Meza, 2012; Duarte-Zaragoza et al., 2015; Castro-González et al., 
2017; Alvarado-Zambrano & Green-Ruiz, 2019; Loredo-Portales et al., 2020; González-Méndez, 
2022; Silva-Gigante et al., 2024). Specifically, in Zacatecas, studies have evaluated the impact 
of Pb, As, and Hg on the quality of soils affected by mining residues and their accumulation in 
vegetables grown in these soils (Dávila et al., 2012; Salas-Muñoz et al., 2021.

The quality of forage used as feed in ruminant production for meat and milk depends on its 
chemical composition, environmental factors, soil type, and exposure to contaminants (Almaraz-
Buendía et al., 2019; Navarro-Ortiz & Roa-Vega, 2020; Abedi et al., 2022; Vasilachi et al., 2023). 
Therefore, analyzing forage from areas near mining sites is crucial to evaluate its nutritional value 
and identify any contaminants that could be harmful. This analysis includes measuring parameters 
such as crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), ash, minerals, 
and quantifying heavy metals and other pollutants (Rezaeian et al., 2020 Ge et al., 2022; Elik & 
Gül, 2025). In Valdecañas, livestock trade is one of the main economic activities, emphasizing the 
importance of assessing how mining and metallurgical activities affect the local agricultural system. 
This study conducted an environmental assessment by measuring heavy metal concentrations in 
soil, water, and forage samples from Valdecañas and evaluated the nutritional quality of the forage 
through proximal analysis.

Material and Methods

Study area

The community of Valdecañas belongs to the Fresnillo municipality, Zacatecas, Mexico 
(Figure 1). It is located at an elevation of 2,250 meters above sea level and lies in a valley with 
intermittent river flows, surface water bodies, agricultural fields, and grazing areas. It is located 
approximately 2 km from the mining facilities of the “Saucito del Poleo” project (Figure 1c).
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Figure 1. Map of the study area showing the location of: (a) map of Zacatecas state, 
(b) map of Fresnillo municipality, (c) active mining area, and (d) sampling points of water 

(blue circle), soil (brown circle), and forage (green circle). Source: Own elaboration.

Water, soil, and forage sample collection

Table 1 displays the characteristics and locations of the water, soil, and forage samples 
collected in October 2024 for agricultural purposes. Water samples were taken from three surface 
water bodies called “lagoon”, “lake”, and “pond”. These bodies receive runoff from an artisanal 
channel that comes directly from the mining facilities and are occasionally used as drinking 
sources for livestock in the community (Figure 1c). For analysis, 500 mL of water was collected in 
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polypropylene bottles, filtered through 45 µm syringe nylon filters, and acidified in the field with 70 
% HNO₃. This sample was used for heavy metal analysis (SE, 2016b).

Soil samples were taken from croplands and areas used for grazing by community 
livestock. A targeted exploratory sampling was performed, collecting approximately 500 g of soil at 
a depth of 30 cm, following the Mexican Standard NMX-132-SCFI-2016. Samples were stored in 
plastic bags and transported to the laboratory (SE, 2016a). Forage samples were gathered using 
a random quadrat method. A 50 x 50 cm quadrat was randomly placed ten times in each sampling 
area. The plant material within each quadrat was harvested until reaching 500 g of forage, then 
placed in paper bags for laboratory analysis processing.

Table 1. Characteristics and location of the samples collected in the community of 
Valdecañas, Fresnillo, Zacatecas.

Type of 
Sample

L a b e l 
Sample Characteristics

UTM Coordinates Altitude
(m.a.s.l.)Longitude

X (East)
Latitude
Y (North)

Water
W1 Lagoon water 714486.41 2560220.66 2,240
W2 Lake water 714407.91 2560010.09 2,246
W3 Pond water 714065.16 2559209.23 2,265
W4 Tap water 713910.17 2559198.01 2,268

Soil

S1
Grazing soil

714461.06 2560004.90 2,243
S2 714265.43 2559755.92 2,252
S3 714151.18 2559780. 60 2,255
S4 714184.04 2559477.82 2,258
S5 Watering trough floor 714045.75 2559198.89 2,266
S6 Corn cultivation soil 714369.96 2560403.62 2,239
S7 Bean cultivation soil 713848.34 2559072.98 2,271
S8 Pasture soil 714343.22 2560418.07 2,238

Forage
F1 Bean forage 714315.63 2558625.85 2,266
F2 713848.34 2559072.98 2,271
F3 Corn forage 714369.96 2560403.62 2,239
F4 714367.27 2558679.85 2,264
F5 Grass forage 714351.06 2560430.23 2,238

W1: Lagoon water. W2: Lake water. W3: Pond water. W4: Tap water. S1: Grazing soil 1.  S2: Grazing soil 2.  
S3: Grazing soil 3.  S4: Grazing soil 4.  S5: Watering trough floor. S6: Corn cultivation soil. S7: Bean cultivation soil. S8: 
Pasture soil. F1: Bean forage 1. F2: Bean forage 2. F3: Corn forage 1. F4: Corn forage 2. Source: Own elaboration

Heavy metal quantification by flame atomic absorption spectrophotometry

To determine the concentrations of As, Pb, Cd, Cr, Cu, Fe, and Zn in soil and forage samples, 
2.5 g of previously sieved samples were used, with a particle size of less than 250 µm for soil 
and 1 mm for forage. Samples were subjected to acid digestion by adding 50 mL of an HCl-HNO₃ 
mixture in a 3:1 ratio (aqua regia). The mixtures were left to stand for 24 hours and then heated to 
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95 °C for 3 hours. Finally, samples were filtered and diluted with HNO₃ (1 %) to a final volume of 
50 mL. For the quantification of As, Pb, Cd, Cr, Cu, Fe, and Zn in water samples, 50 mL of each 
sample was filtered through a 45 µm filter and acidified with 1.5 mL of HNO₃ (70 %) (ISO, 1995; 
EPA, 1996).

Metal concentrations in water, soil, and forage samples were measured using the flame atomic 
absorption spectrophotometry technique, with a Thermo Scientific iCE 3300FL spectrophotometer 
(Cambridge, United Kingdom). For quality control of acid digestion and trace element analysis, 
reference material NIST-2586 containing 500 mg kg-1 of Pb was used (96 % recovery), along with 
high-purity standards from Thermo Scientific to generate four-point calibration curves adjusted 
with the least squares method. The wavelengths (nm) used for element analysis were: 193.7 
for As, 217 for Pb, 228.8 for Cd, 357.9 for Cr, 248.3 for Fe, 324.8 for Cu, and 213.9 for Zn. All 
analyses were conducted in duplicate.

Physicochemical analysis of soil samples

To evaluate the physicochemical parameters of the soil samples, a 1:10 dilution was prepared 
by adding 2 g of soil to 20 mL of deionized water in a 50 mL Falcon tube. The sample was 
shaken for 20 minutes at 30 r.p.m. After sedimentation, the supernatant was analyzed for pH, 
oxidation-reduction potential (ORP), electrical conductivity (EC), and total dissolved solids (TDS). 
Measurements were taken using a digital benchtop multiparameter instrument (Multifunction, EZ-
9909, China) (SEMARNAT, 2002).

Proximal and nutritional characterization of forages: bean, corn, and grass

For the chemical composition analysis of forage samples, fresh material was weighed and 
dried at 60 °C for 65 hours. The dried material was then ground and sieved through a 1 mm mesh. 
Ash content was determined by incinerating the samples in a muffle furnace (Novatech MD-12, 
Lynchburg, VA, USA) at 550 °C for 6 hours. Organic matter (OM) was calculated by subtracting 
ash content from dry matter. Crude protein (CP) was obtained through total nitrogen determination 
using the Dumas combustion method (Leco FP-528, Leco Corporation, St. Joseph, MI, USA). 
Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were sequentially determined using 
Van Soest’s detergent fiber analysis, with an Ankom fiber analyzer (Ankom Technology, Ankom 
200, Macedon, NY USA).

Statistical analysis

A one-way analysis of variance (ANOVA) was conducted, followed by Tukey’s mean comparison 
test (p < 0.05). Before applying ANOVA, normality was checked using the Shapiro-Wilk test at a 
significance level of α = 0.05 (Figure C1). If the data did not meet the normality assumption, a 
power transformation (X^0.5) was used. Pearson correlation analysis and principal component 
analysis (PCA) were performed to identify relationships among the variables and sample types 
(Escot-Espinoza et al., 2021).
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For metals with concentrations below the limit of detection (LOD), a censored data 
approach was employed. The percentage of samples with values below the LOD was calculated 
for each metal. When this percentage exceeded 15 %, specific methods for censored data, 
such as substitution with LOD/√2, were considered, as recommended in the literature (Helsel, 
2012; Hewett & Ganser, 2007). Descriptive statistics—mean, minimum, maximum, and standard 
deviation—were used to summarize the results of the proximal analysis. All statistical analyses 
were performed using Minitab® 18.1 software.

Results and Discussion

Table 2 displays the concentrations of As, Pb, Cd, Cr, Fe, Cu, and Zn in several water, soil, and 
forage samples. Lead (Pb) was detected in all soil samples, with the highest concentration (43.57 
mg kg⁻¹) found in sample S3, collected from a grazing area near the Valdecañas community, 
influenced by a stream originating upstream from nearby mining facilities (Figure 1d). For cadmium 
(Cd), the highest concentration (1.62 mg kg⁻¹) was observed in sample S2, from an agricultural 
area on flat terrain affected by a water channel coming directly from mining operations (Figure 
1d). All soil Pb and Cd levels (Table 2) remained below the permissible limits (PL) of 400 mg 
kg-1 for Pb and 37 mg kg-1 for Cd, according to the NOM-147-SEMARNAT/SSA1-2004 regulation 
(SEMARNAT, 2007). However, ongoing mining waste generation—from operations that began 
in 2011 (Minería en línea, 2022)—may promote biomagnification of heavy metals in various 
environmental receptors. In this context, Belmonte-Serrato et al. (2010) studied a 100 km² area 
in Spain’s Cartagena-La Unión Mining District, characterized by Fe, Pb, and Zn deposits. Their 
findings revealed average concentrations of 66.12 mg kg-1 of Fe, 1 751 mg kg-1 of Pb, and 1.21 
mg kg-1 of Zn in agricultural soils, illustrating how hydrological mobilization processes in semi-arid 
regions can enable the biomagnification of these contaminants in environmental compartments.

In water sample W3, the highest concentrations of Pb, Cu, Fe, and Zn were observed—34.6, 
30.7, 915.45, and 853 µg L-1, respectively. The highest Cd concentration (4.25 µg L-1) was found 
in sample W1 (Table 2). These water sources are fed by the channel running from the mining 
facilities and are located near agricultural areas, accessible to community livestock (Figure 1d, 
Figure C2a). It was found that 75 % of the water samples exceeded the permissible limit for Pb 
in drinking water established by the NOM-127-SSA1-2017 (10 µg L-1), while 100 % exceeded 
the WHO guideline value (1 µg L-1). For Cd, 25 % of samples surpassed the national limit of 3 µg 
L-1 (WHO, 2017; SSA,2022). The presence of these elements in agricultural fields near mining 
and metallurgical industries has been documented (Rodríguez-Eugenio et al., 2019). Therefore, 
water bodies in the Valdecañas community are potential sources of contamination, and the 
area’s topography promotes runoff from the mining site to local ponds and lagoons, facilitating 
biomagnification processes (Figure 1d, Figure C2b).
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Table 2. Metal concentrations of the different types of samples collected in the community of 
Valdecañas, Fresnillo, Zacatecas.

L a b e l 
Sample

As Pb Cd Cr Cu Fe Zn

µg L-1

W1 UD 30.35 ± 2.76A 4.25 ± 0.35A UD 24.4 ± 0B 464.9 ± 24.5B 724.5 ± 12.3AB

W2 UD 12.3 ± 2.12B 3.0 ± 0.85A UD 26.5 ± 2.97AB 218.95 ± 2.05C 10.4 ± 0.57C

W3 UD 34.6 ± 1.13A 3.75 ± 0.07A UD 30.7 ± 0.42A 915.45 ± 8.7A 853 ± 17.4A

W4 UD 2.95 ± 2.62C UD UD UD UD 426.3 ± 87.1B

mg kg-1

S1 UD 8.2 ± 0.9E 0.70 ± 0.03C 3.63 ± 1.57B 5.50 ± 0.25B 1508.5 ± 8.61C 7.6 ± 0.0D

S2 UD 9.8 ± 1.2DE 1.62 ± 0.09A 3.83 ± 0.08B 13.65 ± 0.38A 1526.4 ± 3.96C 18.4 ± 1.9BC

S3 UD 43.57 ± 1.6A 1.23 ± 0.01B 11.84 ± 1.15AB 13.46 ± 1.92A 1892.5 ± 20.9B 65.5 ± 4.7A

S4 UD 28.2 ± 0.1B 1.15 ± 0.18B 17.62 ± 6.35A 7.44 ± 0.61B 1944.1 ± 20.1A 60.8 ± 1.4A

S5 UD 16.3 ± 0.1C 0.74 ± 0.02C 13.98 ± 2.18AB 6.78 ± 0.25B 279.4 ± 0.01D 25.8 ± 0.9B

S6 UD 12.6 ± 0.9CD UD 21.56 ± 9.15A 6.58 ± 0.65B 262.4 ± 4.44D 19.5 ± 1.2B

S7 UD 5.8 ± 0.05E UD 20.87 ± 3.09A 4.33 ± 0.72B 277.2 ± 0.93D 11.0 ± 0.4CD

S8 UD 15.7 ± 1.3C 0.62± 0.017C 13.33 ± 0.24AB 4.38 ± 0.03B 272.2 ± 2.3D 20.0 ± 0.6B

F1 UD UD 0.48 ± 0.62A 41.7 ± 24.7A 6.97 ± 5.57A 137.1 ± 26.6A 16.0 ± 4.1AB

F2 UD UD UD 22.29 ± 4.19A 2.43 ± 2.81A 153.9 ± 16.1A 18.7 ± 0.8AB

F3 UD UD UD 30.78 ± 1.81A 6.26 ± 0.12A 141.1 ± 12.01A 9.7 ± 0.3B

F4 UD UD UD 13.88 ± 7.05A 1.05 ± 0.04A 104.4 ± 0.19A 23.9 ± 2.2AB

As: Arsenic. Cd: Cadmium. Cr: Chrome. Cu: Copper. Fe: Iron. Pb: Lead. Zn: Zinc. W1: Lagoon water. W2: Lake 
water. W3: Pond water. W4: Tap water. S1: Grazing soil 1. S2: Grazing soil 2. S3: Grazing soil 3. S4: Grazing soil 4. S5: 
Watering trough floor. S6: Corn cultivation soil. S7: Bean cultivation soil. S8: Pasture soil. F1: Bean forage 1. F2: Bean 
forage 2. F3: Corn forage 1. F4: Corn forage 2. UD: Undetectable. One-way analysis of variance with Tukey mean test is 
shown (p < 0.05), different letters (A, B, C, or D) indicate statistically significant differences between samples. Source: 
Own elaboration

In forage samples, the highest Cr concentration (41.7 mg kg-1) was found in sample F1 (bean 
forage), collected near soil sample S7, which contained 20.87 mg kg-1 of Cr. Similarly, sample 
F3 (corn forage) had 30.78 mg kg-1 of Cr, while the corresponding soil sample S6 contained 
21.56 mg kg-1 (Figure 1c, Table 2). This indicates a potential mechanism of bioaccumulation and 
biomagnification of Cr in plants consumed by local livestock (Guzmán-Morales et al., 2021). In a 
related study, Castro-González et al. (2018) reported increased Cr levels in alfalfa grown in soils 
irrigated with wastewater for eight months. They observed a rise in Cr content from 1.36 to 2.78 
mg kg-1 in edible parts (leaves and stems) and from 1.34 to 2.14 mg kg-1 in roots.

Although Pb was not detected in the forage samples, its presence in grazing and cropland 
soils remains concerning, as it can transfer through trophic chains and potentially impact animal 
and human health. Khan et al. (2023) evaluated Pb concentrations in animal blood, forage corn, 
and agricultural soils, reporting levels of up to 2.39 mg L-1, 10.34 mg kg-1, and 10.73 mg kg-1, 
respectively, confirming that Pb can move from soil to forage and then to livestock.
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Elements like Fe, Zn, and Cu are essential minerals for livestock’s physiological functions; 
therefore, their presence in forage may not be harmful. However, the safe amount depends on 
factors such as species, age, breed, and production level. Accurate information on dietary mineral 
requirements is essential (Rosero-Noguera & Posada-Ochoa, 2016; Bernardis et al., 2017).

Evaluation of physicochemical parameters in soil samples

Table 3 displays the values of physicochemical parameters obtained from soil samples. 
On average, the samples had a pH of 7.03 and an oxidation-reduction potential (ORP) of 78.0 
mV-SHE. However, samples S6 and S7 showed reducing potentials of -41.5 and -4.5 mV-SHE, 
respectively. Both also had low salt content, as indicated by their TDS and EC values, which is 
typical of croplands experiencing erosion processes (Gutiérrez & Llerena, 2019).

Electrical conductivity (EC) and total dissolved solids (TDS) varied across sampling sites. 
Sample S5 showed the highest EC (977.5 μS cm-1) and TDS (488.5 mg L-1) levels; this sample 
was collected near the pond and at the entrance of the channel originating from the mining facilities 
(Figure 1d). These findings suggest particle movement caused by water erosion from higher 
elevation areas, such as the mining zone, toward the Valdecañas valley. This interpretation is 
supported by the area’s topography and the EC values observed in transitional soil samples near 
water bodies (S2, S3, and S4), which were lower than those in valley bottom soils (S1 and S8), 
where fine particle sedimentation is more prominent (Figure 1c, d; Figure C2a) (Escot-Espinoza 
et al., 2021).

Table 3. Analysis of physicochemical parameters determined in the different soils collected in 
the community of Valdecañas, Fresnillo, Zacatecas.

Label sample pH ORP
(mv-SHE)

EC
(µS cm-1)

TDS
(mg L-1)

S1 7.4 ± 0.07AB 77 ± 9.9B 282.5 ± 47.4B 141.5 ± 23.3B

S2 6.7 ± 0.49B 158.5 ± 16.3A 219 ± 21.2BC 109.5 ± 10.61BC

S3 6.9 ± 0.21AB 86.5 ± 3.54B 72 ± 2.83C 35.5 ± 2.12C

S4 7.0 ± 0AB 59.5 ± 13.44B 43 ± 4.24C 43 ± 4.24BC

S5 6.7 ± 0B 158 ± 0A 977.5 ± 132.2A 488.5 ± 65.8A

S6 8.2 ± 0A -41.5 ± 2.12D 50.5 ± 20.5C 35 ± 4.24C

S7 6.4 ± 0B -4.5 ± 0.71C 33.5 ± 3.54C 16.5 ± 2.12C

S8 7.0 ± 0.84AB 138 ± 4.24A 213.5 ± 6.36BC 106.5 ± 3.54BC

S1: Grazing soil 1. S2: Grazing soil 2. S3: Grazing soil 3. S4: Grazing soil 4.  S5: Watering trough floor. S6: Corn 
cultivation soil. S7: Bean cultivation soil. S8: Pasture soil. ORP: Oxidation-reduction potential. EC: Electrical conductivity. 
TDS: Total dissolved solids. One-way analysis of variance with Tukey mean test is shown (p < 0.05), different letters (A, B, 
C, or D) indicate statistically significant differences between samples. Source: Own elaboration
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Proximal and nutritional analysis of forages

The results of the proximal analysis for forage samples are shown in Table 4. The observed 
crude protein (CP) values were 20.5 % for bean forage, 10 % for corn forage, and 11.4 % for grass 
forage. These percentages correspond to forage harvested at phenological stages before full 
maturity and are comparable to values reported for other forage types such as alfalfa (Palmonari 
et al., 2014; Guo et al., 2019; Vuković et al., 2025). The use of these forages has been linked 
to moderate weight gain and milk production in livestock (Mobashar et al., 2018; Hansen et al., 
2022). However, they are considered adequate for supporting the maintenance and function of 
ruminal microorganisms in ruminants, which require a minimum CP content of 7–10 % (Posada-
Ochoa et al., 2016).

Table 4. Proximal and nutritional characterization of the different forages collected in the 
community of Valdecañas, Fresnillo, Zacatecas.

Parameters Mean (%) Standard deviation Minimum (%) Maximum (%)
Grass forage

Ash 10.77 0.57 10.37 11.17
OM 88.58 0.2 NA NA
NDF 41.96 3.02 39.82 44.1
ADF 41.85 3.01 39.72 43.98
CP 11.44 6.27 NA NA

Bean forage (Phaseolus vulgaris)
Ash 10.65 0.51 10.30 11.01
OM 89.35 3.35 NA NA
NDF 41.96 3.02 39.82 44.1
ADF 41.85 3.01 39.72 43.98
CP 20.51 0.62 NA NA

Corn forage (Zea mays)
Ash 11.07 1.04 10.3 11.80
OM 89.43 0.23 NA NA
NDF 28.61 7.64 23.2 34.01
ADF 18.43 2.84 16.43 20.44
CP 10.06 0.23 NA NA

Ash: Ashes. OM: Organic matter. NDF: Neutral detergent fiber. ADF: Acid detergent fiber. CP: Crude protein. NA: Not applicable.  
Source: Own elaboration

The average NDF content in the evaluated forages was approximately 37.5 %, while ADF 
was 34 %. Ash content, which indicates the mineral level in forages, was 10.6 % for bean forage, 
11 % for corn forage, and 10.7 % for grass forage. These values fall within acceptable ranges for 
forages used in bovine diets (Bernardis et al., 2017). Forages are a key source of minerals for 
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grazing livestock, supporting their growth, reproduction, ruminal microbial functions, and disease 
resistance. However, any deficiency or excess of these minerals can negatively affect animal 
productivity and health. Using wastewater for irrigation can increase mineral levels in soil and 
forage, potentially affecting both development and nutritional quality (Bernardis et al., 2017; Khan 
et al., 2023).

The proximal and nutritional results for the grass forages fall within the normal ranges (Table 
4), considering that high-quality forages should have CP content > 7 %, NDF < 60 %, and ADF <40 
% to meet livestock nutritional needs. However, grasses exposed to contaminants may experience 
changes in nutritional composition—such as the accumulation of metals in plant tissues reducing 
CP content and increasing ash levels (Miranda et al., 2005; Calderón et al., 2023). Similarly, the 
presence of toxic elements may interfere with the absorption and utilization of essential nutrients 
by livestock through the soil–plant–animal continuum, potentially impacting animal health and 
productivity (Pérez-Vázquez et al., 2016; Archundia et al., 2024).

The presence of mining and metallurgical activities near agricultural and grazing areas can 
significantly impact the quality and safety of crops and pastures used in livestock diets. The corn 
and bean forages evaluated in this study fall within ranges considered normal, indicating that their 
cultivation near mining facilities does not compromise their nutritional quality. However, metals 
can affect food safety for consumers, as negative effects on human health have been reported, 
including neurological disorders and carcinogenic risks (Nuss & Tanumihardjo, 2010; Suárez-
Martínez et al., 2016; Rai et al., 2019; Soto-Benavente et al., 2020). Likewise, grasses growing 
near mining zones may be exposed to various contaminants, such as heavy metals and other 
toxic elements, which can accumulate in plant tissues and subsequently in livestock products like 
milk and meat, posing a risk to human health (Miranda et al., 2005; Bermúdez et al., 2011; Liu et 
al., 2013; Pérez-Vázquez et al., 2016).

Statistical analysis of soil and forage samples

Table 5 shows the Pearson correlation analysis for soil samples. The results indicate a significant 
positive correlation (p < 0.05) among the metals Pb, Cd, Cr, Fe, and Zn. The strongest correlation 
was observed between Pb and Cd (p < 0.01), suggesting a possible common anthropogenic 
source. A positive correlation was also noted between EC and TDS (p < 0.05), indicating that 
soil samples contain an ionic load related to dissolved salts. These salts may include secondary 
mineral phases that carry heavy metals (Escot-Espinoza et al., 2021).

The clustering and similar orientation of the Pb, Cd, Cr, and Cu vectors in the PCA (Figure 
2a) further support the hypothesis of a common origin (Table C1). Additionally, the positive 
correlations observed between Fe and Cu, and between Zn and Pb (p < 0.05), could be linked to 
agricultural soils containing mineral particles typical of the Fresnillo Mining District (FMD), such 
as pyrite (FeS₂), chalcopyrite (CuFeS₂), sphalerite (ZnS), and galena (PbS) (Rubalcaba-Ruiz & 
Thompson, 1988). These particles result from mineral processing and may be transported from 
the mine to water bodies in the Valdecañas community via the artisanal channel (Figure 1c). 
Their presence is also associated with the positive correlation between EC and TDS (Table 5, p < 
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0.05), potentially indicating ionic enrichment caused by the dissolution and release of elements in 
sediment accumulation zones (López-Díaz & Estrada-Medina, 2015; Escot-Espinoza et al., 2021).

Table 5. Pearson correlation analysis for soil samples collected in the community of 
Valdecañas, Fresnillo, Zacatecas.

Variable Pb Cd Cr Cu Fe Zn pH ORP EC TDS
Pb 1
Cd 0.852** 1
Cr 0.915** 0.779* 1
Cu 0.729 0.864** 0.52 1
Fe 0.631 0.73* 0.385 0.731* 1
Zn 0.765* 0.476 0.645 0.562 0.503 1
pH -0.261 -0.298 -0.283 -0.122 -0.046 -0.087 1

ORP 0.727 0.881** 0.783* 0.668 0.344 0.211 -0.334 1
EC 0.164 0.288 0.142 0.142 -0.268 -0.239 -0.159 0.628 1

TDS 0.225 0.344 0.162 0.162 -0.211 -0.175 -0.189 0.659 0.993* 1

Cd: Cadmium. Cr: Chrome. Cu: Copper. Fe: Iron. Pb: Lead. Zn: Zinc. ORP: Oxidation-reduction potential. 
EC: Electrical conductivity. TDS: Total dissolved solids. *p < 0.05. **p < 0.01. Source: Own elaboration

Table 6 presents the Pearson correlation analysis for forage samples, showing a positive 
correlation between NDF and ADF (p < 0.05). Additionally, significant positive correlations 
were found between Cr and Cu, and between Fe and Zn (p < 0.05), similar to the correlations 
observed in soil samples. The presence of metals like Cr and Cu in forage may be associated with 
bioaccumulation processes from soil to plant. Moreover, bio-stabilization processes could occur 
due to the presence of organic matter, which promotes the formation of organometallic complexes 
in the rhizosphere (Salas-Ávila et al., 2021; Santos-Ubaldo et al., 2023).

Table 6. Pearson correlation analysis for forage samples collected in the community of 
Valdecañas, Fresnillo, Zacatecas.

Variable Cd Cr Cu Fe Zn Ash OM NDF ADF CP
Cd 1
Cr 0.627 1
Cu 0.59 0.999* 1
Fe 0.562 0.997 0.999* 1
Zn 0.513 0.99 0.996 0.998* 1
Ash -0.725 0.082 0.128 0.162 0.219 1
OM 0.426 0.972 0.982 0.988 0.995 0.314 1
NDF 0.5 -0.361 -0.404 -0.435 -0.487 -0.959 -0.57 1
ADF 0.5 -0.361 -0.404 -0.435 -0.487 -0.959 -0.57 1* 1
CP 0.99 0.508 0.468 0.437 0.384 -0.817 0.291 0.62 0.62 1

Cd: Cadmium. Cr: Chrome. Cu: Copper. Fe: Iron. Pb: Lead. Zn: Zinc. Ash: Ashes. OM: Organic matter. NDF: Neutral 
detergent fiber. ADF: Acid detergent fiber. CP: Crude protein. *p < 0.05. 

Source: Own elaboration



Solís-Rodríguez et al., 2025. 

13Revista Bio Ciencias 12, e1950.                

ISSN 2007-3380

Figure 2a shows the principal component analysis (PCA) for the soil samples, where 
components 1 and 2 account for 77.6 % of the total data variance. Additionally, it can be observed 
that the vectors for Pb, Fe, Cu, Cd, Zn, and ORP are oriented toward the grazing soil samples (S2, 
S3, and S4), which exhibited the highest concentrations of these elements.

Figure 2. Principal component analysis for (a) soil samples and (b) forage samples 
evaluated in the community of Valdecañas, Fresnillo, Zacatecas. Source: Own elaboration.

Samples S7 and S8, corresponding to corn and bean cultivation soils, respectively, did 
not show a significant impact from the presence of heavy metals (Figure 2a). The associations 
identified in the PCA for soil samples indicate that the presence of metals is related to changes 
in physicochemical conditions promoted by the presence of organic matter, which contributes 
to metal accumulation through chelation and/or adsorption processes in grazing areas. When 
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metal-carrying particles come into contact with organic matter present in cultivation zones, they 
may dissolve into free ions, increasing their bioavailability and participating in cation exchange 
reactions with minerals, living organisms, or forage plants (Navarro-Aviñó et al., 2007; Aguirre et 
al., 2021.

In the PCA for forage samples (Figure 2b, Table C2), components 1 and 2 together account 
for 100 % of the total variance. Component 1 correlates the presence of heavy metals (Zn, Fe, 
Cu, and Cr) with organic matter, supporting the theory of organometallic complex formation 
processes in the evaluated agricultural areas. Component 2 correlates crude protein content with 
the presence of Cd. Although no mineral phases containing Cd have been reported in the Fresnillo 
Mining District, Cd may be associated with Zn or phosphorus minerals (as an impurity), suggesting 
a possible anthropogenic contribution from the use of fertilizers, pesticides, and/or agrochemicals 
in cultivated areas of the study site (Bonomelli et al., 2003; Lora-Silva & Bonilla-Gutiérrez, 2010).

Conclusions

The results obtained in this study demonstrate an environmental impact caused by mining 
and metallurgical activities on the soil, water, and vegetation components of the Valdecañas 
community, located in Fresnillo, Zacatecas. These activities have negatively affected the quality 
of surface water bodies used by the community for agricultural and livestock purposes, as heavy 
metal concentrations exceeding the limits established by national and international regulations 
were detected. Additionally, the presence of heavy metals in agricultural and grazing soils—
especially in areas near water bodies—suggests a process of transport and sedimentation of 
metal-bearing particles, magnified by the physiographic characteristics of the area, runoff, and 
water channels.

Although metal concentrations in soil do not exceed permissible limits, the correlation 
among concentrations in soil, water, and forage indicates a biomagnification process within the 
local agroecosystem, with medium- and long-term environmental and health consequences. 
Despite the proximal analysis showing that corn, bean, and grass forages have adequate nutritional 
value for ruminant diets, the presence of metals such as Cr, Cu, and Zn presents a latent risk to 
food safety, requiring continuous monitoring to prevent adverse impacts on various environmental 
receptors.

This study highlights the importance of evaluating the effect of heavy metals in agricultural 
areas near mining and metallurgical activities, as well as the potential biomagnification processes 
within trophic chains. Further studies are recommended to substantiate these findings.
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Supplementary material

Table C1. Principal component analysis for soil samples using metal concentration and 
physicochemical parameters.

Eigenvectors
Variable PC1 PC2 PC3 PC4 PC5

Pb 0.409 0.128 -0.068 0.243 -0.144
Cd 0.419 0.037 0.076 -0.258 -0.163
Cr 0.387 -0.041 -0.127 0.425 -0.404
Cu 0.362 0.154 0.245 -0.298 0.601
Fe 0.274 0.373 0.191 -0.408 -0.189
Zn 0.265 0.354 -0.125 0.547 0.469
pH -0.144 0.115 0.905 0.33 -0.16

ORP 0.385 -0.236 0.05 -0.147 -0.256
EC 0.163 -0.567 0.154 0.05 0.232

TDS 0.188 -0.55 0.125 0.08 0.165
Eigenvectors (Eg) 5.252 2.512 0.932 0.778 0.298

Variance (%) 52.5 25.1 9.3 7.8 3
Accumulated (%) 52.5 77.7 87 94.8 97.7

Source: Own elaboration
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Table C2. Principal component analysis for forage samples using metal concentration and 
proximal analysis in forage.

Eigenvectors
Variable PC1 PC2 PC3 PC4 PC5

Cd 0.195 -0.435 -0.162 0.191 -0.221
Cr 0.405 -0.09 0.158 -0.027 0.571
Cu 0.408 -0.068 0.002 -0.252 -0.521
Fe 0.41 -0.051 0.246 -0.078 -0.316
Zn 0.411 -0.022 0.182 -0.031 -0.064

Ash 0.108 0.476 0.173 0.795 -0.19
OM 0.411 0.026 0.108 0.071 0.458
NDF -0.216 -0.42 0.218 0.044 0.016
ADF -0.216 -0.42 0.684 0.223 -0.035
CP 0.141 -0.464 -0.547 0.452 0.057

Eigenvectors (Eg) 5.895 4.104 0 0 0
Variance (%) 59 41 0 0 0

Accumulated (%) 59 100 100 100 100

Source: Own elaboration.
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Figure C1. Shapiro-Wilk normality test plots (α = 0.05). p > 0.05, the data are normal. 
p < 0.05, the data are not normal (normality is rejected). Source: Own elaboration.
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Figure C2. Elevation profile of (a) the Valdecañas community and (b) the area between the mining 
facilities and the Valdecañas community. Source: Own elaboration.
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