EN PRENSA. El tratamiento con selenio mejora la germinación y el crecimiento de las plántulas de maíz. EN PRENSA
pdf

Palabras clave

Germinación
maíz criollo
pequeños agricultores
tratamiento con selenio
variables morfológicas

Métricas de PLUMX 

Resumen

El proceso de germinación y el desarrollo temprano de las plántulas son fases cruciales en el ciclo vital de las plantas, y una germinación óptima puede contribuir significativamente al rendimiento de los cultivos. El selenio (Se) es un micronutriente esencial para muchos organismos y desempeña un papel fundamental en la mejora de la germinación de las semillas y el crecimiento temprano de las plántulas. La imprimación de semillas es una alternativa prometedora a otras formas de tratamiento de semillas, con el potencial de mejorar la germinación de las semillas y la calidad de las plántulas. Este estudio investigó los efectos de la imprimación de semillas en la germinación y el desarrollo de plántulas de dos variedades de maíz nativo de México utilizando diferentes tratamientos con Se. Se probaron cinco concentraciones de Se (0, 25, 50, 75 y 100 µM L-1). Los resultados mostraron que las concentraciones de Se de 50 y 75 µM L-1 tuvieron un efecto notablemente positivo sobre varias variables de germinación y morfológicas, incluyendo el porcentaje de germinación, la tasa de germinación, el potencial de germinación y el coeficiente de velocidad de germinación. Sin embargo, la concentración de Se de 100 µM L-1 produjo sistemáticamente tasas de germinación más bajas, lo que indica un efecto adverso sobre el proceso de germinación y el desarrollo inicial de las plántulas.

https://doi.org/10.15741/revbio.11.e1618
pdf

Citas

Abdi, N., Wasti, S., Salem, M.B., El Faleh, M., & Mallek-Maalej, E. (2016). Study on germination of seven barley cultivars (Hordeum vulgare L.) under salt stress. Journal of Agricultural Science, 8(8), 88-97.

Abdul‐Bak, A.A., & Anderson, J.D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183x001300060013x.

Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra-Tarafdar, J., Banerjee, S., Hossain, A., & Roy S. (2022). Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Scientific reports,12, 7103. https://doi.org/10.1038/s41598-022-11307-4.

Ahmed, H. (2010). Differences between some plants in selenium accumulation from supplementation soils with selenium. Agriculture and Biology Journal of North America, 1(5), 1050-1056. https://doi.org/10.5251/abjna.2010.1.5.1050.1056.

Al-Omairi, A.A., & Al-Hilfy, I.H. (2021). Effect of soaking maize seeds with selenium and chitosan on improving germination, vigour and viability of seed and seedling. IOP Conference Series: Earth and Environmental Science, 904(1). https://doi.org/10.1088/1755-1315/904/1/012075.

Arias, L., Latournerie, L., Montiel, S., & Sauri, E. (2007). Cambios recientes en la diversidad de maíces criollos de Yucatán, México. Universidad y Ciencia, 23(1), 69-74.

Aristizábal, L., & Álvarez, L.J.A. (2006). Los efectos del nivel de vigor de la semilla pueden persistir e influenciar el crecimiento de la planta, la uniformidad de la plantación y la productividad. Agronomía 14(1):17-24.

Bano, I., Skalickova, S., Sajjad, H., Skladanka, J., & Horky, P. (2021). Uses of selenium nanoparticles in the plant production. Agronomy, 11, 2229. https://doi.org/10.3390/agronomy11112229.

Bolívar, C.E., Méndez-Natera, R., & Otahola-Gómez, V.A. (2007). Germinación y el crecimiento de plántulas de maíz en laboratorio, invernadero y campo. Revista de Agricultura Tropical, 36, 23-33.

Brewer, K., Clulow, A., Sibanda, M., Gokool, S., Naiken, V., & Mabhaudhi, T. (2022). Predicting the chlorophyll content of maize over phenotyping as a proxy for crop health in smallholder farming systems. Remote Sensing, 14 (3), 518. https://doi.org/10.3390/rs14030518.

Diédhiou, I., Ramirez-Tobias, H.M., Fortanelli-Martinez, J., & Flores-Ramírez, R. (2021). Effects of different temperatures and water stress on germination and initial growth of creole genotypes of maize from three different agroclimatic regions of San Luis Potosí (Mexico). Maydica, 66, 16.

Domínguez-Hernández, E., Gaytán-Martínez, M., Gutiérrez-Uribe, J.A., & Domínguez-Hernández, M.E. (2022). The nutraceutical value of maize (Zea mays L.) landraces and the determinants of its variability: A review. Journal of Cereal Science, 103, 103399. https://doi.org/10.1016/j.jcs.2021.103399.

Eagles, H.A., & Lothrop, J.E. (1994). Highland maize from central Mexico-its origin, characteristics, and use in breeding programs. Crop Science, 34, 11-19.

Elias, S.G., Copeland, L.O., McDonald, M.B. & Baalbaki, R.Z. (2012). Seed Testing: Principles and Practices. Michigan State University Press, East Lansing, MI.

Escobar-Álvarez, J.L., Ramírez-Reynoso, O., Cisneros-Saguilán, P.C., Gutiérrez-Dorado, R., Maldonado-Peralta, M.A., & Valenzuela-Lagarda, J.L. (2021). Viability and germination in native corn seeds from the state of Guerrero. Ecosistemas y Recursos Agropecuarios. 8(II): e2963. https://doi.org/10.19136/era.a8nII.2963.

Espinosa-Paz, N. Martínez-Sánchez, J., Ariza-Flores, R., Cadena-Iñiguez, P., Hernández-Maldonado, M., & Ramírez-Córdova, A.L. (2017). Germinación de semillas de variedades criollas de maíz (Zea mays L.) bajo déficit hídrico. Agro Productividad, 10(9):41-47.

Gaxiola-Cuevas, N., Mora-Rochin, S., Cuevas-Rodriguez, E.O., Leon-Lopez, L., Reyes-Moreno, C., Montoya-Rodriguez, A., & Milan-Carrillo, J. (2017). Phenolic acids profiles and cellular antioxidant activity in tortillas produced from mexican maize landrace processed by nixtamalization and lime extrusion cooking. Plant Foods Human Nutrition, 72(3), 314-320. https://doi.org/10.1007/s11130-017-0624-3.

Gupta, M., & Gupta, S. (2016). An overview of selenium uptake, metabolism, and toxicity in plants. Frontier in Plant Science, 7, 2074. https://doi.org/10.3389/fpls.2016.02074

Hasanuzzaman, M., Nahar, K., Garcia-Caparros, P., Parvin, K., Zulfiqar, F., Ahmed, N., & Fujita, M. (2021). Selenium Supplementation and crop plant tolerance to metal/metalloid toxicity. Frontier in Plant Science 12, 792770. https://doi.org/10.3389/fpls.2021.792770.

Hawrylak-Nowak, B., Hasanuzzaman, M., & Matraszek-Gawron, R. (2018). Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_12.

Hernández-Avera, Y., Soto-Pérez, N., Florido-Bacallao, M., Delgado-Abad, C., Ortiz-Pérez, R., & Enríquez-Obregón, G. (2015). Evaluation of salinity tolerance under controlled conditions of nine Cuban soybean cultivars (Glycine max (L.) Merril). Cultivos Tropicales, 36(4), 120-125.

Hu, F.Q., Jiang, S.C., Wang, Z., Hu, K., Xie, Y.M., Zhou, L., Zhu, J.Q., Xing, D.Y., & Du, B. (2022). Seed priming with selenium: Effects on germination, seedling growth, biochemical attributes, and grain yield in rice growing under flooding conditions. Plant Direct, 6(1), e378. https://doi.org/10.1002/pld3.378.

Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49,141-148. http://dx.doi.org/10.1016/j.eja.2013.04.00.

Kader, M. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal & Proceedings of the Royal Society of New South Wales, 138, 65-75.

Khaliq, A., Aslam, F., Matloob, A., Hussain, S., Geng, M., Wahid, A. & Rehman, H. (2015). Seed Priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biological Trace Element Research, 166, 236-244. https://doi.org/10.1007/s12011-015-0260-4.

Laynez-Garsaball, J.A., Méndez-Natera, J.R., & Mayz-Figueroa, J. (2007). Crecimiento de plántulas a partir de tres tamaños de semilla de dos cultivares de maíz (Zea mays L.), sembrados en arena y regados con tres soluciones osmóticas de sacarosa. Idesia (Arica), 25(1), 21-36.

León-Morales, J., Panamá-Raymundo, W., Langarica-Velázquez, E., & García-Morales, S. (2019). Selenium and vanadium on seed germination and seedling growth in pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). Revista Bio Ciencias, 6, e425. https://doi.org/10.15741/revbio.06.e425

Lin-Xuan, L., Zhu, Q., Jin-Yuan, C., Ying, L., Yang, L., Gui-Li, W., Xiao-Li, H., Jian-Hua, M., & Kun-Hua, W. (2023). Effects of selenium on growth and biochemical characteristics of tissue culture seedlings of Sophora tonkinensis. Pharmacognosy Magazine, 19 (3), 772-781. https://doi.org/10.1177/09731296231169614.

Magdaleno-Hernández, E., Mejía-Contreras, A., Martínez-Saldaña, T,. Jiménez-Velazquez, M. A., Sanchez-Escudero, J., & García-Cué, J.L. (2016). Selección tradicional de maíz criollo. Agricultura, Sociedad y Desarrollo, 13(3), 437-447.

Martínez, D.E., & Guiamet, J.J. (2004). Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie, 24, 41-46.

Mejía-Ramírez, F., Castelán-Estrada, M., Lagunes-Espinoza, L.C., Obrador-Olán, J.J., & Lara-Viveros, F.M. (2019). Osmoacondicionamiento de maíces criollos: efectos sobre la fenología y crecimiento. Revista Mexicana de Ciencias Agrícolas, 10(8), 1721-1732. https://doi.org/10.29312/remexca.v10i8.1159.

Moulick, D., Ghosh, D., & Chandra-Santra, S. (2016). Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiology and Biochemistry, 109, 571-578. https://doi.org/10.1016/j.plaphy.2016.11.004.

Nawaz, F., Ashraf, M.Y., Ahmad, R., & Waraich, E.A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research, 151(2), 284-293. https://doi.org/10.1007/s12011-012-9556-9.

Nawaz, F., Zulfiqar, B., Ahmad, K.S., Majeed, S., Shehzad, M.A., Javeed, H.M.R., Tahir, M.N., & Ahsan, M. (2021). Pretreatment with selenium and zinc modulates physiological indices and antioxidant machinery to improve drought tolerance in maize (Zea mays L.). South African Journal of Botany, 138, 209-216. https://doi.org/10.1016/j.sajb.2020.12.016.

Nciizah, A.D., Rapetsoa, M.C., Wakindiki, I.I., & Zerizghy, M.G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766.

Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 2. https://doi.org/10.1186/1939-8433-5-2.

Odjo, S., Bongianino, N., Gonzalez-Regalado, J., Cabrera-Soto, M.L., Palacios-Rojas, N., Burgueno, J., & Verhulst, N. (2022). Effect of storage technologies on postharvest insect pest control and seed germination in mexican maize landraces. Insects, 13(10), 878. https://doi.org/10.3390/insects13100878.

Omar, S., Tarnawa, Á., Kende, Z., Ghani, R.A., Kassai, M.K., & Jolánkai, M. (2022). Germination characteristics of different maize inbred hybrids and their parental lines. Cereal Research Communications, 50(4), 1229-1236. https://doi.org/10.1007/s42976-022-00250-9.

Pérez-Mendoza, C., Tovar-Gómez, M. R., Arellano-Vázquez, J.L., & Velásquez-Cárdelas, G. A. (2020). Atributos físicos y fisiológicos en semillas de maíz y su relación con caracteres de vigor. Revista Mexicana de Agroecosistemas, 8(1), 11-13.

Pierre, J.F, Latournerie-Moreno, L., Garruña-Hernández, R., Jacobsen, K.L., Laboski, C.A. M., Salazar-Barrientos, L.L., & Ruiz-Sánchez, E. (2021). Farmer perceptions of adopting novel legumes in traditional maize-based farming systems in the Yucatan Peninsula. Sustainability, 13(20), 11503. https://doi.org/10.3390/su132011503.

Pinzon-Nuñez, D.A., Wiche, O., Bao, Z., Xie, S., Fan, B., Zhang, W., Tang, M., & Tian, H. (2023). Selenium species and fractions in the rock-soil-plant interface of maize (Zea mays L.) grown in a natural ultra-rich se environment. International Journal of Environmental Research and Public Health, 20(5), 4032. https://doi.org/10.3390/ijerph20054032.

Rodríguez, I., Adam, G., & Durán, J.M. (2008). Ensayos de germinación y análisis de viabilidad y vigor en semillas. Agricultura: Revista Agropecuaria, 78(912), 836-842.

Ruíz-Torres, N.A., Rincón-Sánchez, F., Bautista-Morales, V.M., Martínez-Reyna, J. M., Burciaga-Dávila, H.C., & Olvera-Esquivel, M. 2012. Calidad fisiológica de semilla en dos poblaciones de maíz criollo mejorado. Agraria 9(2), 43-48.

Sun, Y., Xu, J., Miao, X., Lin, X., Liu, W., Ren, H. (2021). Effects of exogenous silicone on maize seed germination and seedling growth. Scientific Reports, 11, 1014. https://doi.org/10.1038/s41598-020-79723-y.

Vázquez-Ramos, J.M., & de la Paz-Sánchez, J. (2003). The cell cycle and seed germination. Seed Science Research, 13 (2): 113-130. https://doi.org/10.1079/SSR2003130.

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional