Resumen
Los pastos halófitos constituyen una alternativa para la alimentación animal en ecosistemas semidesérticos y áridos, planteándose como objetivo del presente estudio evaluar la productividad, morfometría, valor nutricional y reciclaje de minerales de poblaciones silvestres de D. spicata en dos ecosistemas costeros en Baja California Sur, México. Los datos asociados al estudio se analizaron mediante un diseño experimental bifactorial no equilibrado, con el factor A representado por los Litorales Costeros con dos niveles, Costa del Océano Pacífico y Costa del Golfo de California y el factor B representado por la condición natural en que se encontraron las poblaciones de D. spicata, solo o asociado con otras especies vegetales, considerando tres repeticiones para cada nivel en cada factor de estudio. Las variables evaluadas fueron materia verde, seca y muerta, contenido de Na, Fe, Mn, Zn, Ca, Mg, K y Cu en tejido vegetales, composición química (proteína cruda, fibra detergente ácido, fibra detergente neutro, lignina ácido detergente, celulosa, hemicelulosa, N enlazado a la fibra detergente ácido y cenizas insolubles en detergente ácido) y valor nutritivo de D. spicata. En el suelo se determinó la textura. Los resultados mostraron que, D. spicata en ambos litorales crece y se desarrolla cerca de humedales, lagunas, región intermareal, pozas y charcas de marea, todos a nivel de costa, su composición química y valor nutritivo se asemejó al patrón bromatológico de las gramíneas tropicales. Concluyendo que, los aspectos morfométricos y productivos sugieren una aptitud forrajera con posibilidades de implementación de pastoreo, aunque con baja carga animal.
Citas
AOAC. Official Methods of Analysis of AOAC International (2016). 20th ed.; AOAC International: Rockville, MD, USA.
Abd El-Hack, M.E., Mahmoud Alagawany, A.S.E., El Sayed, M.D., Hala, M.N.T., Ahmed, S.M.E., Shaaban, S.E., & Ayman, A.S. (2018). Effect of forage Moringa oleifera L. (Moringa) on animal health and nutrition and its beneficial applications in soil, plants and water purification. Agriculture, 8(9), 1-22. https://doi.org/10.3390/agriculture8090145.
Al Daini, H., Norman, H.C., Young, P., & Barrett-Lennard, E.G. (2013). The source of nitrogen (NH4+ or NO3-) affects the concentration of oxalate in the shoots and the growth of Atriplex nummularia (Oldman saltbush). Functional Plant Biology, 40(10), 1057-1064. doi: 10.1071/FP13060. https://doi.org/10.1071/FP13060
Al-Dakheel, A., Al-Hadrami, G., Al-Shorabi, S., & AbuRumman, G. (2006). Optimizing management practices for maximum production of two salt-tolerant grasses: Sporobolus virginicus and Distichlis spicata. Pp. 44-50 in The Seventh Annual UAE University Research Conference. Dubai: College of Food and Agriculture.
Al-Shorepy, S.A., Alhadrami, G.A., & Al-Dakheel, A.J. (2010). Growth performances and carcass characteristics of indigenous lambs fed halophyte Sporobolus virginicus grass hay. Asian-Australasian Journal of Animal Sciences, 23(5), 556-562. https://doi.org/10.5713/ajas.2010.90094
Barbosa, O.A. (2020). Relaciones entre los tipos fisionómicos de vegetación y los suelos de un bajo salino del centro este de San Luis (Argentina). Tesis Doctoral, Universidad Nacional de Rio Cuarto, Córdoba.
Barbosa, O.A., Álvarez-Rogel, J., & Lavado, R.S. (2023). Forage offer from a saline wetland of Central Argentina (San Luis Province). Wetlands Ecology and Management, 1-10. https://doi.org/10.1007/s11273-023-09945-0
Barrett-Lennard, E.G., Hayley, C.N., & Kingsley, D. (2016). Improving saltland revegetation through understanding the ‘Recruitment Niche’: Potential lessons for ecological restoration in extreme environments. Restoration Ecology, 24, S91-97. https://doi:10.1111/rec.12345
Bartlett, M.S. (1937). Properties of sufficiency and statistical test. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences. 160(901), 268-282. https://doi.org/10.1098/rspa.1937.0109
Beetle, A.A. (1943). The North American variations of Distichlis spicata. Bulletin of the Torrey Botanical Club, 70(6), 638-650. https://doi:10.2307/2481721
Bondaruk, V.F., Oñatibia, G.R., Fernández, R.J., Agüero, W., Blanco, L., Bruschetti, M., Kröpfl, A., Loydi, A., Pascual, J., Peri, P., Peter, G., Quiroga, R.E., & Yahdjian, L. (2022). Forage provision is more affected by droughts in arid and semi‐arid than in mesic rangelands. Journal of Applied Ecology, 59(9), 2404-2418. https://doi:10.1111/1365-2664.14243
Brizuela, M.A., Cid, M.S., Miñón, D.P., & Grecco, R.F. (1990). Seasonal utilization of saltgrass (Distichlis spp.) by cattle. Animal Feed Science and Technology, 30(3-4), 321-325. https://doi:10.1016/0377-8401(90)90022-Z
Bustan, A., Pasternak, D., Pirogova, I., Durikov, M., Devries, T.T., El-Meccawi, S., & Degen, A.A. (2005). Evaluation of saltgrass as a fodder crop for livestock. Journal of the Science of Food and Agriculture, 85(12), 2077-2084. https://doi:10.1002/jsfa.2227
Cáceres, O., & González-García, E. (2000). Metodología para la determinación del valor nutritivo de los forrajes tropicales. Pastos y Forrajes, 23(2), 87-103.
Chen, C. (2015). Application of growth models to evaluate the microenvironmental conditions using tissue culture plantlets of Phalaenopsis sogo Yukidian ‘V3’. Scientia Horticulturae, 191, 25-30. https://doi:10.1016/j.scienta.2015.05.007
Crespo, G., Rodriguez, I., & Martinez, R.O. (2000). Balance N-P-K En Un sistema de producción de leche con pastizal de Cynodom nlemfluensis y banco de biomasa de Pennisetum purpureum Clon CT-115. Revista Cubana de Ciencia Agrícola, 34, 167-174.
DeFalco, L.A., Scoles-Sciulla, S.J., & Beamguard, E.R. (2017). The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic. Plant Ecology, 218(4), 475-486. https://doi.org/10.1007/s11258-017-0704-3
Di Bella, C.E., García-Parisi, P.A., Lattanzi, F.A., Druille, M., Schnyder, H., & Grimoldi, A.A. (2019). Grass to legume facilitation in saline-sodic steppes: influence of vegetation seasonality and root symbionts. Plant and Soil, 443, 509-523. https://doi.org/10.1007/s11104-019-04247-y
Echeverría, J., Paniagua-Zambrana, N.Y., & Bussmann, R.W. (2020). Distichlis spicata (L.) Greene. Poaceae. In: Paniagua-Zambrana, N.Y. & Bussmann, R.W. (eds.). Ethnobotany of the Andes, Ethnobotany of Mountain Regions, Springer. https://doi.org/10.1007/978-3-030-28933-1_102.
Elzenga, T., Barrett-Lennard, E.G., & Choukr-Allah, R. (2021). Developments in adaptation to salinity at the crop level. Pp. 353-356. In: Future of sustainable agriculture in saline environments, edited by Negacz, K., Vellinga, P., Barrett-Lennard, E., Choukr-Allah, R., & Elzenga, T. CRC Press, Taylor and Francis Group. Boca Raton, London, and New York.
Escobar-Hernández, A., Troyo-Diéguez, E., García-Hernández, J.L., Hernández-Contreras, H., Murillo-Amador, B., & López-Aguilar, D.R. (2005). Principal component analysis for determining forage potential of saltgrass Distichlis spicata L. (Greene) in coastal ecosystems of Baja California Sur, Mexico. Técnica Pecuaria de México, 43(1), 13-25. Access on line: https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/1395
Espejel, I., Jiménez-Orocio, O., Castillo-Campos, G., Garcillán, P.P., Álvarez, L., Castillo-Argüero, S., Durán, R., Ferrer, M., Infante-Mata, D., Iriarte, S., León de la Luz, J.L., López-Rosas, H., Medel Narváez, A., Monroy, R., Moreno-Casasola, P., Rebman, J.P., Rodríguez-Revelo, N., Sánchez-Escalante, J., & Vanderplank, S. (2017). Flora en playas y dunas costeras de México. Acta Botánica Mexicana, (121), 39-81. https://doi:10.21829/abm121.2017.1290
El-Shaer, H.M. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the near east region. Small Ruminant Research, 91(1), 3-12. https://doi.org/10.1016/j.smallrumres.2010.01.010
Ferreira, V., Albariño, R., Larrañaga, A., LeRoy, C.J., Masese, F.O., & Moretti, M.S. (2023). Ecosystem services provided by small streams: an overview. Hydrobiologia, 850, 2501-2535. https://doi.org/10.1007/s10750-022-05095-1
Garrett, A., Saito, L., Athey, S., Goehring, N., & Verdur, P. (2020). Experimental halophyte growth in saline environments. Journal of the Nevada Water Resources Association, 1(2020), 5-28. https://doi:10.22542/jnwra/2020/1/1
Glenn, E.P., & O'Leary, J.W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. Journal of Arid Environments, 9(1), 81-91. https://doi.org/10.1016/S0140-1963(18)31273-4
Goering, H.K., & Van Soest, P.J. (1970). Forage Fiber Analyses (Apparatus, Reagent, Procedures and Some Applications): Agriculture Handbook No. 379.
Hasnain, M., Abideen, Z., Ali, F., Hasanuzzaman, M., & El-Keblawy, A. (2023). Potential of halophytes as sustainable fodder production by using saline resources: A review of current knowledge and future directions. Plants, 12, 2150. https://doi.org/10.3390/plants12112150
Hill, T.D., Sommer, N.R., Kanaskie, C.R., Santos, E.A., & Oczkowski, A.J. (2018). Nitrogen uptake and allocation estimates for Spartina alterniflora and Distichlis spicata. Journal of Experimental Marine Biology and Ecology, 507, 53-60. http://doi:10.1016/j.jembe.2018.07.006
Horvant, J. (2002). Distichlis stricta. Saltgrass, desert saltgrass. Agricultura. Retrieved March 1, 2023 (http://www.usask.ca/agriculture/plantsci/classes/range/distichlis.html).
Howard, R.J., Rafferty, P.S., & Johnson, D.J. (2020). Plant community establishment in a coastal marsh restored using sediment additions. Wetlands, 40(4), 877-892. https://doi:10.1007/s13157-019-01217-z
ICBA. (2006). Biosalinity News. Newsletter of the International Center of Biosaline Agriculture (ICBA). Dubai.
James, J.J., & Richards, J.H. (2005). Plant N capture from pulses: Effects of pulse size, growth rate, and other soil resources. Oecologia, 145(1), 113-122. https://doi:10.1007/s00442-005-0109-1
Kaiser, H.F. (1974). An index of factor simplicity. Psychometrica, 39(1), 31-36. https://doi.org/10.1007/BF02291575
Karberg, J.M., Beattie, K.C., O’Dell, D.I., & Omand, K.A. (2018). Tidal hydrology and salinity drives salt marsh vegetation restoration and phragmites australis control in New England. Wetlands 38(5), 993-1003. https://doi:10.1007/s13157-018-1051-4
Kudoh, A., Megonigal, J.P., Langley, J.A., Noyce, G.L., Sakai, T., & Whigham, D.F. (2023). Reproductive responses to increased shoot density and global change drivers in a widespread clonal wetland species, Schoenoplectus americanus. Estuaries and Coasts, 1-13. https://doi:10.1007/s12237-023-01249-z
León de la Luz, J.L., Medel-Narváez, A., & Domínguez-Cadena, R. (2015). Floristic diversity and notes on the vegetation of Bahía Magdalena area, Baja California Sur, México. Botanical Sciences 93 (3), 1-22. https://doi:10.17129/botsci.159
León de la Luz, J.L., Rebman, J.P., Van Devender, T.R., Sánchez-Escalante, J.J., Delgadillo-Rodríguez, J., & Medel-Narváez, A. (2018). El conocimiento florístico actual del noroeste de México: Desarrollo, recuento y análisis del endemismo. Botanical Sciences, 96(3), 555-568. https://doi:10.17129/botsci.1885
Laanbroek, H.J., Zhang, Q.F., Leite, M., Verhoeven, J.T.A., & Whigham, D.F. (2018). Effects of Rhizophora mangle leaf litter and seedlings on carbon and nitrogen cycling in salt marshes - potential consequences of climate-induced mangrove migration. Plant and Soil, 426(1-2), 383-400. https://doi:10.1007/s11104-018-3611-z
Leake, J.E., Squires, V., & Shabala, S. (2022). Rethinking rehabilitation of salt-affected land: New perspectives from Australian experience. Earth, 3(1), 245-258. https://doi.org/10.3390/earth.
Ledea-Rodríguez, J.L., Verdecia-Acosta, D., La O-León, O., Ray-Ramírez, J.V., Reyes-Pérez, J.J., & Murillo-Amador, B. (2018). Caracterización química de nuevas variedades de Cenchrus purpureus tolerantes a la sequía. Agronomia Mesoamericana, 29(3), 1-18. https://doi:10.15517/ma.v29i3.32910
Lewis, D.W., & McConchie, D. (2012). Analytical Sedimentelogy. Springer Science and Business Media.
Li, X., Norman, H.C., Hendry, J.K., Hulm, E., Young, P., Speijers, J., & Wilmot, M.G. (2018). The impact of supplementation with Rhagodia preissii and Atriplex nummularia on wool production, mineral balance, and enteric methane emissions of merino sheep. Grass and Forage Science, 73(2), 381-391. https://doi:10.1111/gfs.12314
López Soto, M.M., Koch, S.D., Flores-Cruz, M., & Engleman, E.M. (2009). Anatomía comparada de la lámina foliar del género (Poaceae). Acta Botánica Mexicana, (89), 1-23. https://doi:10.21829/abm89.2009.302
Lymbery, A.J., Kay, G.D., Doupé, R.G., Partridge, G.J., & Norman, H.C. (2013). The potential of a salt-tolerant Plant (Distichlis spicata Cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt-affected farmland. Science of the Total Environment, 445-446, 192-201. https://doi:10.1016/j.scitotenv.2012.12.058
Massey, F.J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68-78. https://doi:10.1080/01621459.1951.10500769
Massimi, M., Al-Rifaee, M., Alrusheidat, J., Al-Dakheel, A., Ismail, F., & Al-Ashgar, Y. (2016). Salt-tolerant triticale (X Triticosecale Witt) cultivation in Jordan as a new forage crop. American Journal of Experimental Agriculture, 12(2), 1-7. https://doi:10.9734/AJEA/2016/24292
Meixler, M.S., Kennish, M.J., & Crowley, K.F. (2018). Assessment of plant community characteristics in natural and human-altered coastal marsh ecosystems. Estuaries and Coasts, 41(1), 52-64. https://doi:10.1007/s12237-017-0296-0
Montesinos, D.B. (2012). Halophytic vegetation of three andean localities in the pacific streams of south Peru. Chloris Chilensis: Revista Chilena de Flora y Vegetación, 15(2), 1-25.
Mohammed, F., Şabik, S., Sevindik, A. E., Pehlivan, E., & Sevindik, M. (2020). Determination of antioxidant and oxidant potentials of Thymbra spicata collected from Duhok-Iraq. Turkish Journal of Agriculture Food Science and Technology, 8(5), 1171-1173. https://doi.org/10.24925/turjaf.v8i5.1171-1173.3341
Negacz, K., Vellinga, P., Barrett-Lennard, E., Choukr-Allah, R., & Elzenga, T. (2021). Future of Sustainable Agriculture in Saline Environments. Boca Raton: CRC Press. https://doi:10.1201/9781003112327
Norman, H.C., Cocks, P.S., & Galwey, N.W. (2020). Populations of two annual clover species evolved in response to 13 years of grazing management and phosphate fertilizer application. Grass and Forage Science, 75(1), 64-75. https://doi:10.1111/gfs.12460
Norman, H.C., Humphries, A.W., Hulm, E., Young, P., Hughes, S.J., Rowe, T., Peck, D.M., & Vercoe, P.E. (2021). Productivity and nutritional value of 20 species of perennial legumes in a low-rainfall mediterranean-type environment in southern Australia. Grass and Forage Science, 76(1), 134-158. https://doi:10.1111/gfs.12527
Norman, H.C., Masters, D.G., & Barrett-Lennard, E.G. (2013). Halophytes as forages in saline landscapes: Interactions between plant genotype and environment change their feeding value to ruminants. Environmental and Experimental Botany, 92, 96-109. https://doi:10.1016/j.envexpbot.2012.07.003
Pensiero, J.F., Zabala, J.M., del Marinoni, L., & Richard, G.A. (2021). Native and naturalized forage plant genetic resources for saline environments of the southernmost portion of the American Chaco. Pp. 339-380 in Saline and Alkaline Soils in Latin America. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-52592-7_18
Peterson, P.M., Soreng, R.J., Davidse, G., Filgueiras, T.S., Zuloaga, F.O., & Judziewicz, E.J. (2001). Catalogue of new world grasses (Poaceae): II. Subfamily Chloridoideae. Contributions from the United States National Herbarium 41.
Rasser, M.K., Fowler, N.L., & Dunton, K.H. (2013). Elevation and plant community distribution in a microtidal salt marsh of the western Gulf of Mexico. Wetlands, 33(4), 575-583. https://doi:10.1007/s13157-013-0398-9
Robertson, S.M., Lyra, D.A., Mateo-Sagasta, J., Ismail, S., & Akhtar, M.J.U. (2019). Financial analysis of halophyte cultivation in a desert environment using different saline water resources for irrigation. In: Hasanuzzaman, M., Nahar, K. & Öztürk, M. (eds). Ecophysiology, abiotic stress responses and utilization of halophytes. Springer, Singapore. https://doi.org/10.1007/978-81-13-3762-8_17
Rosales, R.B., & Sánchez-Pinzón, S. (2005). Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia y Tecnología Agropecuaria, 6(1), 69-82. https://doi:10.21930/rcta.vol6_num1_art:39
Salman, I.S., Barrett-Lennard, E.G., Kadhim, K., Ismail, S., & Norman, H.C. (2013). Salt-tolerant forages for irrigated saline land in central Iraq. Proceedings of the 22nd International Grasslands Congress, 15-19 September 2013, Sydney, pp. 1652-1654.
Santelmann, M.V., Boisjolie, B.A., Flitcroft, R., & Gomez, M. (2019). Relationships between salt marsh vegetation and surface elevation in coos bay estuary, Oregon. Northwest Science, 93(2), 137-154. https://doi:10.3955/046.093.0205
Sigua, G.C., & Hudnall, W.H. (1991). Gypsum and water management interactions for revegetation and productivity improvement of brackish marsh in Louisiana. Communications in Soil Science and Plant Analysis, 22(15-16), 1721-1739. https://doi:10.1080/00103629109368530
Smith, A.P., Zurcher, E., Llewellyn, R.S., & Norman, H.C. (2022). Designing integrated systems for the low rainfall zone based on grazed forage shrubs with a managed interrow. Agronomy, 12(10), 2348. https://doi:10.3390/agronomy12102348
Van Soest, P.V., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Srinivas, A., Rajasheker, G., Jawahar, Devineni, P.L., Parveda, M., Kumar, S.A., & Kavi Kishor, P.B. (2018). Deploying mechanisms adapted by halophytes to improve salinity tolerance in crop plants: focus on anatomical features, stomatal attributes, and water use efficiency. In: Kumar, V., Wani, S., Suprasanna, P., Tran, L.S. (eds). Salinity responses and tolerance in plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_2
Torres, V., López, V., & Noda, A. (1993). Example for application o multivariate techniques in different stages of the evaluation and screening of pastures species. II. Multivariate analysis of variance. Cuban Journal of Agricultural Science, 27, 247.
Valiela, I., Chenoweth, K., Lloret, J., Teal, B., Howes, D., & Goehringer Toner, D. (2023). Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in great sippewissett marsh. Science of the Total Environment, 867, 161546. https://doi.org/10.1016/j.scitotenv.2023.161546
Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144-53. https://doi:10.1016/j.envexpbot.2012.07.010
Vogt, Ch. (2015). Clasificación de las comunidades halófilas de las estepas salinas en la cuenca del riacho Yakaré Sur, Chaco Boreal, Paraguay. Boletín del Museo Nacional de Historia Natural del Paraguay, 19(2), 41-49.
Yensen, N.P., & Weber, C.W. (1985). A review of Distichlis spp. for production and nutritional values. Pp. 809-8222 in Arid lands today and tomorrow, edited by E. Whitehead, C. Hutchinson, B. Timmermann, and Y. Varady. Boulder: Westvew Press.
Zamin, M., & Khattak, A.M. (2018). Evaluating Sporobolus spicatus ecotypes under different mowing heights for turf use. Sarhad Journal of Agriculture, 34(1), 114-122. http://dx.doi.org/10.17582/journal.sja/2018/34.1.114.122
Zhang, Q.F., & Laanbroek, H.J. (2020). Tannins from senescent Rhizophora mangle mangrove leaves have a distinctive effect on prokaryotic and eukaryotic communities in a Distichlis spicata Salt Marsh Soil. FEMS Microbiology Ecology 96(9). https://doi:10.1093/femsec/fiaa148
Zucol, A.F., Patterer, N.I., Moya, E., & Fernández Pepi, M.G. (2019). Phytolith analysis of the main species of Distichlis sp. (Chloridoideae: Poaceae) distributed in south America. Review of Palaeobotany and Palynology, 269. https://doi:10.1016/j.revpalbo.2019.06.004
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional