EN PRENSA. AgNPs rompe la pared celular en Clorella vulgaris mediante generación de estrés oxidativo. EN PRENSA
PDF
PDF
PDF (English)

Palabras clave

Plata
Nanopartículas
Clorella-vulgaris
citotoxicidad
Estrés oxidativo

Métricas de PLUMX 

Resumen

Las nanopartículas de plata se utilizan ampliamente debido en parte a su poder antibacteriano. Sin embargo, debido a su tamaño nanométrico, estas no pueden ser retenidas por los filtros de aguas residuales que llegan al medio acuático, lo que podría afectar a microorganismos de las cadenas alimentaria iniciales como las microalgas. El propósito de este estudio fue dilucidar los efectos citotóxicos de las AgNP (3-7 nanómetros) en Chlorella vulgaris exsitu. La síntesis de nanopartículas de plata se realizó mediante reducción química de nitrato de plata, se caracterizaron mediante microscopía electrónica de barrido. C. vulgaris, recolectada del lago de Chapala, Jalisco, México, fue cultivada en medio Bristol expuestas a diferentes concentraciones de nanopartículas de plata (0.01, 0.1 y 1 mg/L) durante 24 horas. Se determinó un importante efecto citotóxico en C. vulgaris expuestas a las nanopartículas de plata, manifestado por disminución en el contenido de Clorofila a, cambios morfológicos, perforaciones prominentes en las paredes celulares, disminución importante del contenido de lípidos y generación de estrés oxidativo, correspondiente a la concentración de nanopartículas.

https://doi.org/10.15741/revbio.11.e1649
PDF
PDF
PDF (English)

Citas

Amal, M., Awuah, G. B., Raboch, H., & Andersson, S. (2013). Differences and similarities of the internationalization processes of multinational companies from developed and emerging countries. European Business Review, 25, 411-428. https://doi.org/10.1108/EBR-08-2012-0048

Anand, R., & Bhagat, M. (2019). Silver nanoparticles (AgNPs): as nanopesticides and nanofertilizers. MOJ Biology and Medicine, 4(1), 19-20. https://doi.org/10.15406/mojbm.2019.04.00107

Ayyappan, S., Gopalan, R. S., Subbanna, G. N., & Rao, C. N. R. (1997). Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. Journal of Materials Research, 12(2), 398-401. https://doi.org/10.1557/JMR.1997.0057

Baky, H. H. A. E., & El-Baroty, G. S. (2013). Healthy Benefit of Microalgal Bioactive Substances. Journal of Aquatic Science, 1(1), 11-22. http://pubs.sciepub.com/jas/1/1/3

Burczyk, J., & Hesse, M. (1981). The ultrastructure of the outer cell wall-layer ofChlorella mutants with and without sporopollenin. Plant Systematics and Evolution, 138(1), 121-137. https://doi.org/10.1007/BF00984613

Cao, C., Huang, J., Guo, Y., Yan, C. N., Xiao, J., Ma, Y. X., Liu, J. L., & Guan, W. Z. (2019). Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax. Environmental Pollution, 252(Pt A), 931-940. https://doi.org/10.1016/j.envpol.2019.05.144

Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiologic Methods, 77(1), 41-47. https://doi.org/10.1016/j.mimet.2009.01.001

Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology, 42(12), 4583-4588. https://doi.org/10.1021/es703238h

Courtois, P., Rorat, A., Lemiere, S., Guyoneaud, R., Attard, E., Levard, C., & Vandenbulcke, F. (2019). Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals. Environmental Pollution, 253, 578-598. https://doi.org/10.1016/j.envpol.2019.07.053

Das, P., Metcalfe, C. D., & Xenopoulos, M. A. (2014). Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environmental Science & Technology, 48(8), 4573-4580. https://doi.org/10.1021/es405039w

Dash, A., Singh, A. P., Chaudhary, B. R., Singh, S. K., & Dash, D. (2012). Effect of Silver Nanoparticles on Growth of Eukaryotic Green Algae. Nano-Micro Letters, 4(3), 158-165. https://doi.org/10.1007/BF03353707

Deng, N., Li, H., Li, Y., Mo, F., Wang, M., Li, Z., Chen, X., Xu, J., Chai, R., & Wang, H. (2022). Physiological homeostasis alteration and cellular structure damage of Chlorella vulgaris exposed to silver nanoparticles with various microstructural morphologies. Environmental Science Pollution and Research, 29(17), 26011-26020. https://doi.org/10.1007/s11356-022-19193-z

Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639-642. https://doi.org/10.1016/j.mimet.2006.11.008

Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., von Gleich, A., & Gottschalk, F. (2018). Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Scentifici Reports, 8(1), 1565. https://doi.org/10.1038/s41598-018-19275-4

Helmlinger, J., Sengstock, C., Groß-Heitfeld, C., Mayer, C., Schildhauer, T. A., Köller, M., & Epple, M. (2016). Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects RSC Advances, 6(22), 18490-18501. https://doi.org/10.1039/C5RA27836H

Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de biología marina y oceanografía, 49, 157-173.

Hiriart-Baer, V. P., Fortin, C., Lee, D. Y., & Campbell, P. G. (2006). Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella sub-capitata, grown under continuous culture conditions: influence of thiosulphate. Aquatic Toxicology, 78(2), 136-148. https://doi.org/10.1016/j.aquatox.2006.02.027

Kanhere, J., Gopinathan, R., & Banerjee, J. (2014). Cytotoxicity and genotoxicity of malachite green on non-target aquatic organisms: Chlorella pyrenoidosa and Daphnia magna [Article]. Water, Air, & Soil Pollution, 225(9). https://link.gale.com/apps/doc/A384098085/AONE?u=anon~a029db01&sid=googleScholar&xid=77f70b11

Kohen, R., & Nyska, A. (2002). Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology, 30(6), 620-650. https://doi.org/10.1080/01926230290166724

Lee, S. B. (2011). Nanotoxicology: toxicity and biological effects of nanoparticles for new evaluation standards. Nanomedicine (Lond), 6(5), 759-761. https://doi.org/10.2217/nnm.11.97

Martínez-Castañón, G. A., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10(8), 1343-1348. https://doi.org/10.1007/s11051-008-9428-6

Meroni, G., Soares Filipe, J. F., & Martino, P. A. (2020). In Vitro Antibacterial Activity of Biological-Derived Silver Nanoparticles: Preliminary Data. Veterinary Sciences, 7(1), 12. https://www.mdpi.com/2306-7381/7/1/12

Nguyen, D. D., Luo, L. J., & Lai, J. Y. (2021). Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Materials Science & Engineering C, Materials for Biological Applications, 119, 111497. https://doi.org/10.1016/j.msec.2020.111497

Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80-85. https://doi.org/10.1016/j.ecoenv.2011.11.012

Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. https://doi.org/10.1128/aem.02218-06

Panahi, Y., Mostafazadeh, B., Abrishami, A., Saadat, A., Beiraghdar, F., Tavana, S., Pishgoo, B., Parvin, S., & Sahebkar, A. (2013). Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clinical Laboratory, 59(5-6), 579-587. https://doi.org/10.7754/clin.lab.2012.120110

Perreault, F., Bogdan, N., Morin, M., Claverie, J., & Popovic, R. (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology, 6(2), 109-120. https://doi.org/10.3109/17435390.2011.562325

Pham, T.-L. (2019). Effect of Silver Nanoparticles on Tropical Freshwater and Marine Microalgae. Journal of Chemistry, 2019, 1-7. https://doi.org/10.1155/2019/9658386

Phuong Hong Lam, M. T. L., Dung My Thi Dang, Nguyen Phuc Cam Tu, Dinh The Nhan and Tin Chanh Duc Doan. (2020). Effects of silver nanoparticles on the growth, mortality rate and morphology of Chlorella vulgaris and Thalassiosira weissflogii algae. International Journal of Nanotechnology, 17(7-10), 722-739. https://doi.org/10.1504/ijnt.2020.111336

Priyanka, P., Kinsella, G. K., Henehan, G. T., & Ryan, B. (2020). Nile Red assay development for the estimation of neutral lipids in and. The EuroBiotech Journal, 4(4), 216-222. https://doi.org/doi:10.2478/ebtj-2020-0025

Rodriguez-Garcia, I., & Guil-Guerrero, J. L. (2008). Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chemistry, 108(3), 1023-1026. https://doi.org/10.1016/j.foodchem.2007.11.059

Romero, N., Visentini, F. F., Marquez, V. E., Santiago, L. G., Castro, G. R., & Gagneten, A. M. (2020). Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environmental Research, 189, 109857. https://doi.org/10.1016/j.envres.2020.109857

Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/https://doi.org/10.1016/j.rser.2014.04.007

Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2010). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23, 721-726. https://doi.org/10.1007/s10811-010-9569-8

Shanab, S. M. M., Partila, A. M., Ali, H. E. A., & Abdullah, M. A. (2019). Characterization and Impact of Silver nanoparticles on cell growth, lipid, carbohydrate and fatty acids of Chlorella vulgaris and Dictyochloropsis splendida. Beilstein Archives. https://doi.org/10.3762/bxiv.2019.91.v1

Sotiriou, G. A., & Pratsinis, S. E. (2011). Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 1(1), 3-10. https://doi.org/10.1016/j.coche.2011.07.001

Turner, A., Brice, D., & Brown, M. T. (2012). Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca. Ecotoxicology, 21(1), 148-154. https://doi.org/10.1007/s10646-011-0774-2

van Beelen, V. A., Spenkelink, B., Mooibroek, H., Sijtsma, L., Bosch, D., Rietjens, I. M., & Alink, G. M. (2009). An n-3 PUFA-rich microalgal oil diet protects to a similar extent as a fish oil-rich diet against AOM-induced colonic aberrant crypt foci in F344 rats. Food Chem Toxicol, 47(2), 316-320. https://doi.org/10.1016/j.fct.2008.11.014

Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International Journal of Nanomedicine, 15, 2555-2562. https://doi.org/10.2147/ijn.S246764

Zhou, G., Xu, L., Wang, H., Sun, A., Wang, Y., Li, X., & Jiang, R. (2023). Different responses of Chlorella vulgaris to silver nanoparticles and silver ions under modulation of nitric oxide. Environmental Science and Pollution Research Int, 30(23), 64536-64546. https://doi.org/10.1007/s11356-023-26846-0

Zouzelka, R., Cihakova, P., Rihova Ambrozova, J., & Rathousky, J. (2016). Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environental Science and Pollution Research Int, 23(9), 8317-8326. https://doi.org/10.1007/s11356-016-6361-6

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional