Resumen
México, es el principal productor de Sechium edule, cuya producción es afectada por Phytophthora capsici, que ataca a plantas y frutos. El objetivo de este estudio fue seleccionar in vitro variantes somaclonales de S. edule var. virens levis con resistencia a P. capsici. Se obtuvieron filtrados de cultivo de tres cepas patogénicas (A1-C, A2-H y A3-O). Se determinó la concentración letal media (CL50) de los filtrados de cultivo de P. capsici en plantas de S. edule germinadas in vitro. Posteriormente, se regeneraron variantes somaclonales de S. edule, mediante organogénesis indirecta y fueron sometidas a 0, 20, 40 y 60 % v/v del filtrado de cultivo de la cepa más fitotóxica (A1-C). La concentración letal media fue 25 % del filtrado de cultivo A1-C en plantas germinadas in vitro. Para las plantas regeneradas vía organogénesis indirecta, la concentración letal media fue 40 % del filtrado de cultivo A1-C con 50.33 % supervivencia, 61.1 % de daño foliar, 3.67 hojas marchitas y 58.88 % de daño en tallo. Las plantas de S. edule regeneradas vía organogénesis indirecta presentaron una mayor resistencia a P. capsici. Esta investigación contribuirá a los estudios de mejoramiento genético en esta especie.
Citas
Aguirre-Medina, J. F., Cadena-Iñiguez, J., Olguín-Hernández, G., Aguirre-Cadena, J. F., & Andrade-Luna, M. I. (2021). Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage. Agriculture, 11(5), 391. https://doi.org/10.3390/agriculture11050391
Ahmed, R., & Gray, D. (1996). Immunological memory and protective immunity: understanding their relation. Science, 272(5258), 54-60. https://doi.org/10.1126/science.272.5258.54
Al-Khayri, J. M., & Ibraheem, Y. (2014). In vitro selection of abiotic stress tolerant date palm (Phoenix dactylifera L.): a review. Emir. J. Food Agric, 26(11), 921-933. http://ejfa.info/index.php/ejfa/article/view/18975/9582
Anil, V. S., Lobo, S., & Bennur, S. (2018). Somaclonal variations for crop improvement: Selection for disease resistant variants in vitro. Plant Science Today, 5(2), 44-54. https://doi.org/10.14719/pst.2018.5.2.382
Armijos, R., Espinosa-Delgado, L., & Cueva, A. (2021). Indirect shoot regeneration using 2,4-D induces somaclonal variations in Cinchona officinalis. Floresta Ambiente, 28(3), e20210017. https://doi.org/10.1590/2179-8087-FLORAM-2021-0017
Avendaño-Arrazate, C. H., Cadena-Iñiguez, J., Arévalo-Galarza, M. L., Cisneros-Solano, V. M., Aguirre-Medina, J. F., Moreno-Pérez, E. D. C., Cortés-Cruz, M., Castillo-Martínez, C.R., & Ramírez-Vallejo, P. (2012). Variación genética en el complejo infraespecífico de chayote evaluada mediante sistemas isoenzimáticos. Pesquisa Agropecuária Brasileira, 47(2), 244-252. https://doi.org/10.1590/S0100-204X2012000200013
Baklouti, E., Beulé, T., Nasri, A., Romdhane, A. B., Drira, R., Doulbeau, S., Rival, A., Drira, N., & Fki, L. (2022). 2,4-D induction of somaclonal variations in in vitro grown date palm (Phoenix dactylifera L. cv Barhee). Plant Cell, Tissue and Organ Culture, 150, 191–205. https://doi.org/10.1007/s11240-022-02259-8
Barchenger, D. W., Lamour, K. H., & Bosland, P. W. (2018). Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Frontiers in Plant Science, 9, 628. https://doi.org/10.3389/fpls.2018.00628
Chang, K. A., Ley, S. L., Lee, M. Y., Yaw, H. Y., Lee, S. W., Chew, L. Y., Neo, Y. P., & Kong, K. W. (2021). Determination of nutritional constituents, antioxidant properties, and α-amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods. LWT, 151, 112-177. https://doi.org/10.1016/j.lwt.2021.112177
Chunthawodtiporn, J., Hill, T., Stoffel, K., & Deynze, A V. (2019). Genetic Analysis of Resistance to Multiple Isolates of Phytophthora capsici and Linkage to Horticultural Traits in Bell Pepper. HortScience, 54(7), 1143-1148. https://doi.org/10.21273/HORTSCI13359-18
Cruz-Martínez, V., Castellanos-Hernández, O. A., Acevedo-Hernández, G. J., Torres-Morán, M. I., Gutiérrez-Lomelí, M., Ruvalcaba-Ruiz, D., & Rodríguez-Sahagún, A. (2017). Genetic fidelity assessment in plants of Sechium edule regenerated via organogenesis. South African Journal of Botany, 112, 118-122. https://doi.org/10.1016/j.sajb.2017.05.020
Flores, P. S., Otoni, W. C., Dhingra, O. D., de Souza Diniz, S. P. S., Santos, T. M. D., & Bruckner, C. H. (2012). In vitro selection of yellow passion fruit genotypes for resistance to Fusarium vascular wilt. Plant Cell, Tissue and Organ Culture (PCTOC), 108, 37-45. https://doi.org/10.1007/s11240-011-0009-5
Flores, P. S., & Bruckner, C. H. (2014). Gamma rays on the survival of yellow passion fruit inoculated with Fusarium oxysporum f sp. Passiflorae/Raios gama na sobrevivencia de plantas de maracujazeiro amarelo inoculadas con Fusarium oxysporum f sp. Passiflorae. Ciência Rural, 44(4), 639-645. http://dx.doi.org/10.1590/S0103-84782014000400011
García-Ramírez, E., Contreras-Oliva, A., Salinas-Ruiz, J., Hernández-Ramírez, G., Spinoso-Castillo, J. L., & Colmenares Cuevas, S. I. (2023). Plant extracts control in vitro growth of disease-causing fungi in chayote. Plants, 12(9), 1800. https://doi.org/10.3390/plants12091800
Gutiérrez-Torres, J., Núñez-Pastrana, R., Leyva-Ovalle, O. R., Ortiz-Laurel, H., Contreras-Oliva, A., López-Espíndola, M., & Herrera-Corredor, J. A. (2019). Determinación de la vida útil sensorial en chayote (Sechium edule (Jacq.) Sw.) de exportación con cuatro recubrimientos comerciales almacenado a temperatura ambiente y refrigeración. Agroproductividad, 12, 57-62. https://doi.org/10.32854/agrop.v0i0.359
Hernández, E. (2024). Así fue como la sequía en Veracruz ha disparado el precio del chayote en México. México Forbes. https://www.forbes.com.mx/fmi-recorta-perspectivas-de-crecimiento-para-mexico-en-2024-a-2-2/
Jathunarachchi, A. S., Perera, P. I. P., & Salgadoe, A. S. A. (2021). Plant genetic resources assay for abiotic stress-tolerant traits using tissue culture techniques: a review. SABRAO Journal of Breeding & Genetics, 53(3), 334-351.
Kaur, N., Lozada, D. N., Bhatta, M., Barchenger, D. W., Khokhar, E. S., Nourbakhsh, S. S., & Sanogo S. (2024). Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC Plant Biology, 24, 416. https://doi.org/10.1186/s12870-024-05097-2
Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(54), 1-18. https://doi.org/10.1007/s13205-016-0389-7
Kumar, A., Kaur, R., & Sharma, M. (2019). In vitro cell selection and its molecular confirmation in tomato against buckeye rot (Phytophthora nicotianae var. parasitica). International Journal of Chemical Studies, 7, 3278-3283
Lamour, K. H., Stam, R., Jupe, J., & Huitema, E. (2012). The oomycete broad‐host‐range pathogen Phytophthora capsici. Molecular plant pathology, 13(4), 329-337. https://doi.org/10.1111/j.1364-3703.2011.00754.x
Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theoretical and applied genetics, 60(4), 197-214. https://doi.org/10.1007/BF02342540
Lee, J. H., Siddique, M. I., Kwon, J. K., & Kang, B. C. (2021). Comparative genomic analysis reveals genetic variation and adaptive evolution in the pathogenicity-related genes of Phytophthora capsici. Frontiers in Microbiology, 12, 694136. https://doi.org/10.3389/fmicb.2021.694136
Li, T., Ai, G., Fu, X., Liu, J., Zhu, H., Zhai, Y., & Dou, D. (2022). A Phytophthora capsici RXLR effector manipulates plant immunity by targeting RAB proteins and disturbing the protein trafficking pathway. Molecular Plant Pathology, 23(12), 1721-1736. https://doi.org/10.1111/mpp.13251
Midgley, K. A., Van den Berg, N., & Swart, V. (2022). Unraveling plant cell death during Phytophthora infection. Microorganisms, 10(6),1139. https://doi.org/10.3390/microorganisms10061139
Mishra, N., Tripathi, M. K., Tiwari, S., Tripathi, N., Sapre, S., Ahuja, A., & Tiwari, S. (2021). Cell suspension culture and in vitro screening for drought tolerance in soybean using Poly-ethylene glycol. Plants, 10(3), 517. https://doi.org/10.3390/plants10030517
Mohanraj, D., Padmanaban, P., & Karunakaran, M. (2003). Effect of phytotoxin of Colletotrichum falcatum Went. (Physalospora tucumanensis) on sugarcane in tissue culture. Acta phytopathologica et entomologica hungarica, 38(1-2), 21-28. https://doi.org/10.1556/aphyt.38.2003.1-2.4
Morgan, G. A., Barrett, K. C., Leech, N. L., & Gloeckner, G. W. (2019). IBM SPSS for introductory statistics: Use and interpretation. Routledge, 266. https://doi.org/10.4324/9780429287657
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Newstrom, L. E. (1991). Evidéncia para el centro do origen del chayote, Sechium edule (Cucurbitaceae). Economic Botany, 45, 410-428. https://doi.org/10.1007/BF02887082
Nyange, N. E., Williamson, B., McNicol, R. J., Lyon, G. D., & Hackett, C. A. (1995). In vitro selection of Coffea arabica callus for resistance to partially purified phytotoxic culture filtrates from Colletotrichum kahawae. Annals of applied biology, 127(3), 425-439. https://doi.org/10.1111/j.1744-7348.1995.tb07602.x
Ochoa, M. J., Rivera-López, L., & Gómez-Leyva, J. F. (2016). In vitro selection method in explants of Opuntia sps. with resistance to black spot caused by Pseudocercospora opuntiae. Revista de la Facultad de Ciencias Agrarias, 48 (1), 21-31. http://revista.fca.uncu.edu.ar/images/stories/pdfs/2016-01/Cp03_Ochoa.pdf
Olguín-Hernández, G., Valdovinos Ponce, G., Cadena Íñiguez, J., & Arévalo Galarza, M. (2013). Etiology of Chayote (Sechium edule) wilting plants in the state of Veracruz. Revista Mexicana de Fitopatología, 31(2), 161-169. ISSN 2007-8080.
Pacheco-Narcizo, A., Trejo-Téllez, L. I., Hidalgo-Contreras, J. V., Núñez-Pastrana, R., & Gómez-Merino, F. C. (2022). Bioestimulación del chayote [Sechium edule (Jacq.) Sw.] en respuesta a la aplicación de fosfito. Revista Fitotecnia Mexicana, 45(4), 483-492. https://doi.org/10.35196/rfm.2022.4.483
Pati, P. K., Virk, G. S., & Nagpal, A. (2017). In vitro selection of resistant/tolerant mutants lines of Citrus jambhiri Lush. using crude culture filtrate of Phytophthora parasitica and their randomly amplified polymorphic DNA analysis. Journal of Phytopathology, 165(11-12), 771-781. https://doi.org/10.1111/jph.12617
Patiño, T.C., Hoyos, S.R., & Afanador, K.L. (2007). Selección y regeneración in vitro de somaclones de tomate de árbol (Solanum betacea cav. Sendt) utilizando filtrados de cultivo de Colletotrichum acutatum con actividad pectinasa. Revista Facultad Nacional de Agronomía Medellín, 60(2), 3923-3937. ISSN 0304-2847
Purwati, R. D., & Harran, S. (2007). In vitro selection of abaca for resistance to Fusarium oxysporum f. sp. cubense. HAYATI Journal of Biosciences, 14(2), 65-70. https://doi.org/10.4308/hjb.14.2.65
Pu, Y.T., Luo, Q., Wen, L. H., Li, Y.R., Meng, P.H., Wang, X.J., & Tan, G.F. (2021). Origin, Evolution, Breeding, and Omics of Chayote, an Important Cucurbitaceae Vegetable Crop. Frontiers in Plant Science, 12, 739091. https://doi.org/10.3389/fpls.2021.739091
Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environmental and experimental botany, 71(1), 89-98. https://doi.org/10.1016/j.envexpbot.2010.10.021
Rai, G. S., Liew, E. C., & Guest, D. (2020). Survey, identification, and genetic diversity of Phytophthora capsici causing wilt of chilli (Capsicum annuum L.) in Bhutan. European Journal of Plant Pathology, 158(3), 655-665. https://doi.org/10.1007/s10658-020-02108-4
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Luna-Rodríguez, M., & Castro-Luna, A. A. (2015). In vitro phytotoxicity of culture filtrates of Fusarium oxysporum f. sp. vanillae in Vanilla planifolia Jacks. Scientia Horticulturae, 197, 573-578. https://doi.org/10.1016/j.scienta.2015.10.019
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Teixeira da Silva, J. A., Luna-Rodríguez, M., Noa-Carrazana, J. C., Bautista-Aguilar, J. R., Leyva-Ovalle, O.R., & Murguía-González, J. (2019). In vitro selection of vanilla plants resistant to Fusarium oxysporum f. sp. vanillae. Acta Physiologiae Plantarum, 41, 40. https://doi.org/10.1007/s11738-019-2832-y
Rebouças, T. A., de Jesus Rocha, A., Cerqueira, T. S., Adorno, P. R., Barreto, R. Q., dos Santos Ferreira, M., Morais Lino L.S., de Oliveira Amorim, V.B., dos Santos-Serejo, J. A., Haddad, F., Fortes, F.C., & Amorim, E. P. (2021). Pre-selection of banana somaclones resistant to Fusarium oxysporum f. sp. cubense, subtropical race 4. Crop Protection, 147, 105692. https://doi.org/10.1016/j.cropro.2021.105692
Reeves, G., Monroy-Barbosa, A., & Bosland, P. W. (2013). A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. Phytopathology, 103 (5), 472 - 478. https://doi.org/10.1094/PHYTO-09-12-0242-R
Sahu, M., Maurya, S., & Jha, Z. (2023). In vitro selection for drought and salt stress tolerance in rice: an overview. Plant Physiology Reports, 28(1), 8-33. https://doi.org/10.1007/s40502-023-00713-z
Sengar, A. S., Thind, K. S., Kumar, B., Pallavi, M., & Gosal, S. S. (2009). In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant growth regulation, 58, 201-209. https://doi.org/ 10.1007/s10725-009-9368-x
Sevillano-Serrano, J., Larsen, J., Rojas-Rojas, F. U., & Vega-Arreguí, J. C. (2024). Increasing virulence and decreasing fungicide sensitivity in Phytophthora capsici after continuous metalaxyl-chlorothalonil exposure. Journal of Plant Pathology, https://doi.org/10.1007/s42161-024-01713-0
Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2023). https://www.siap.gob.mx
Soto-Contreras, A., Núñez-Pastrana, R., Rodríguez-Deméneghi, M. V., Aguilar-Rivera, N., Galindo-Tovar, M. E., & Ramírez-Mosqueda, M. A. (2022). Indirect organogenesis of Sechium edule (Jacq.) Swartz. In Vitro Cellular & Developmental Biology-Plant, 58(6), 903-910. https://doi.org/10.1007/s11627-022-10304-6
Soto-Contreras, A., Caamal-Chan, M. G., Ramírez-Mosqueda, M. A., Murguía-González, J., & Núñez-Pastrana, R. (2024). Morphological and Molecular Identification of Phytophthora capsici Isolates with Differential Pathogenicity in Sechium edule. Plants, 13(12), 1602. https://doi.org/10.3390/plants13121602
Švábová, L., & Lebeda, A. (2005). In vitro selection for improved plant resistance to toxin‐producing pathogens. Journal of Phytopathology, 153(1), 52-64. https://doi.org/10.1111/j.1439-0434.2004.00928.x
Thakur, M., Sharma, D., & Sharma, S. (2002). In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. sp. dianthi. Plant cell reports, 20, 825-828. https://doi.org/10.1007/s00299-001-0412-1
Verma, S., Modgil, M., & Patidar, S. (2021). In vitro screening of apple rootstock MM106 some clone with Phytophthora cactorum culture filtrate. Journal of Plant Pathology, 103, 231-240. https://doi.org/10.1007/s42161-020-00722-z
Vitamvas, J., Viehmannova, I., Cepkova, P. H., Mrhalova, H., & Eliasova, K. (2019). Assessment of somaclonal variation in indirect morphogenesis-derived plants of Arracacia xanthorrhiza. Pesquisa Agropecuária Brasileira, v.54, e00301. https://doi.org/10.1590/S1678-3921.pab2019.v54.00301e
Wang, W., Liu, D., Zhuo, X., Wang, Y., Song, Z., Chen, F., Pan, Y., & Gao, Z. (2021). The RPA190-pc gene participates in the regulation of metalaxyl sensitivity, pathogenicity and growth in Phytophthora capsici. Gene, 764, 145081. https://doi.org/10.1016/j.gene.2020.145081
Yoo, C. M., Dalid, C. Moyer, C., Whitaker, V., & Lee, S. (2022). Improving strawberry varieties by somaclonal variation.IFAS Extension, University of Florida, 2022(5), 1-5. https://doi.org/10.32473/edis-HS1448-2022
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional