EN PRENSA "Efecto de un sistema hidropónico en carrete (SHC) en la producción y calidad bioquímica de tomate" EN PRENSA
PDF

Palabras clave

Rendimiento
biocompuesto
agua
raíces adventicias
tallo

Métricas de PLUMX 

Resumen

Los sistemas de producción hidropónicos son una técnica viable que permite un mejor uso del agua y fertilizantes, actualmente se busca incrementar la funcionalidad de estos sistemas, por medio de la adaptación de sistemas existentes, con la finalidad de hacer más eficiente el manejo, incrementar producción y calidad de los cultivos. El objetivo de este trabajo es evaluar el efecto de un sistema hidropónico en carrete en la producción (SHC) y calidad bioquímica de frutos de tomate, comparado con un sistema  hidropónico convencional en sustrato (SSH). Se encontraron diferencias estadísticas entre tratamientos para variables bioquímicas como  vitamina C, capacidad antioxidante y proteínas totales, así como en características de interés comercial como solidos solubles totales y acidez titulable; no hubo diferencias para glutatión, compuestos fenólicos, flavonoides, licopeno y  beta-caroteno; la producción se incrementó en un 15% en el SHC en comparación con el SSH y las plantas en SHC mostraron menor estrés hídrico en floración y cosecha a diferencia del SSH. El SHC influye en el contenido de biocompuestos en frutos de tomate de interés bioquímico y comercial, así mismo incrementó del rendimiento total por planta, lo cual representa una ventaja productiva y económica, por lo que el SHC es una propuesta importante como sistema de producción.

https://doi.org/10.15741/revbio.11.e1717
PDF

Citas

Agius, C., von Tucher, S., Poppenberger, B., & Rozhon, W. (2018). Quantification of sugars and organic acids in tomato fruits. MethodsX, 5, 537-550. https://doi.org/10.1016/j.mex.2018.05.014

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), Article 4. https://doi.org/10.1038/nprot.2007.102

Almeselmani, M., Pant, R. C., & Singh, B. (2009). Potassium Level and Physiological Response and Fruit Quality in Hydroponically Grown Tomato. International Journal of Vegetable Science, 16(1), 85-99. https://doi.org/10.1080/19315260903271526

Ampim, P. A. Y., Obeng, E., & Olvera-Gonzalez, E. (2022). Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants, 11(21), Article 21. https://doi.org/10.3390/plants11212843

Anthon, G. E., & Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. https://doi.org/10.1016/j.foodchem.2011.11.066

Asaduzzaman, M. (2015). Soilless Culture: Use of Substrates for the Production of Quality Horticultural Crops. BoD – Books on Demand.

Ayala-Contreras, C. A., González-Fuentes, J. A., Zermeño-González, A., Benavides-Mendoza, A., Peña-Ramos, F. M., & Hernández-Mauriri, J. A. (2022). Respuesta fisiológica y productiva de tomate en un sistema NTF modificado tipo carrete. Ecosistemas y recursos agropecuarios, 9(2). https://doi.org/10.19136/era.a9n2.3361

Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. https://doi.org/10.1016/j.postharvbio.2011.05.016

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Casierra-Posada, F., & Aguilar-Avendaño, Ó. E. (2008). Calidad en frutos de tomate (Solanum lycopersicum L.) cosechados en diferentes estados de madurez. Agronomía Colombiana, 26(2), 300-307.

Chen, J., Kang, S., Du, T., Guo, P., Qiu, R., Chen, R., & Gu, F. (2014). Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management, 146, 131-148. https://doi.org/10.1016/j.agwat.2014.07.026

Cuellar-Murcia, C. A., & Suárez-Salazar, J. C. (2018). Flujo de savia y potencial hídrico en plantas de tomate (Solanum lycopersicum L.) bajo condiciones de invernadero. Revista Colombiana de Ciencias Hortícolas, 12(1), 104-112. https://doi.org/10.17584/rcch.2018v12i1.7316

Delgadillo-Díaz, M., Gullian-Klanian, M., Sosa-Moguel, O., Sauri-Duch, E., & Cuevas-Glory, L. F. (2019). Evaluation of Physico-chemical Characteristics, Antioxidant Compounds and Antioxidant Capacity in Creole Tomatoes ( Solanum lycopersicum L. and S. pimpinellifolium L.) in an Aquaponic System or Organic Soil. International Journal of Vegetable Science, 25(2), 124-137. https://doi.org/10.1080/19315260.2018.1487496

Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53-61. https://doi.org/10.1016/j.compag.2012.02.006

Dorai, M., Papadopoulos, A., & Gosselin, A. (2001). Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie, 21(4), 367-383. https://doi.org/10.1051/agro:2001130

Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., & Saccardo, F. (2006). Changes in Antioxidant Content of Tomato Fruits in Response to Cultivar and Nutrient Solution Composition. Journal of Agricultural and Food Chemistry, 54(12), 4319-4325. https://doi.org/10.1021/jf0602572

Fayezizadeh, M. R., Ansari, N. A. Z., Albaji, M., & Khaleghi, E. (2021). Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars. Agricultural Water Management, 258, 107171. https://doi.org/10.1016/j.agwat.2021.107171

Fernandes, I., Leça, J. M., Aguiar, R., Fernandes, T., Marques, J. C., & Cordeiro, N. (2021). Influence of Crop System Fruit Quality, Carotenoids, Fatty Acids and Phenolic Compounds in Cherry Tomatoes. Agricultural Research, 10(1), 56-65. https://doi.org/10.1007/s40003-020-00478-z

Fish, W. W., Perkins-Veazie, P., & Collins, J. K. (2002). A Quantitative Assay for Lycopene That Utilizes Reduced Volumes of Organic Solvents. Journal of Food Composition and Analysis, 15(3), 309-317. https://doi.org/10.1006/jfca.2002.1069

Flores, L., & Edwards, M. (2019). A Historical Overview of Protected Agriculture in the State of Sinaloa, Mexico: Implications for Improving Rural Prosperity. Journal of International Agricultural and Extension Education, 26, 7. https://doi.org/10.5191/jiaee.2019.26301

Fortis-Hernández, M., Preciado-Rangel, P., Segura-Castruita, M. A., Mendoza-Tacuba, L., Gallegos-Robles, M. A., Hernández, J. L. G., & Vásquez-Vásquez, C. (2018). Changes in nutraceutical quality of tomato under different organic substrates. Horticultura Brasileira, 36(2), 189-194. https://doi.org/10.1590/s0102-053620180207

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae, 10(1), Article 1. https://doi.org/10.3390/horticulturae10010049

Gruda, N. (2009). Do soilless culture systems have an influence on product quality of vegetables? 82. 141-147.https://doi.org/10.18452/9433

Haghighi, M., & Teixeira Da Silva, J. A. (2013). Amendment of hydroponic nutrient solution with humic acid and glutamic acid in tomato (Lycopersicon esculentum Mill.) culture. Soil Science and Plant Nutrition, 59(4), 642-648. https://doi.org/10.1080/00380768.2013.809599

Igbokwe, G. E., & Anagonye, C. O. (2013). Determination of β–Carotene & Vitamin C content of Fresh Green Pepper (Capsicum annnum), Fresh Red Pepper (Capsicum annum) and Fresh Tomatoes (Solanumly copersicum) Fruits. The Bioscientist Journal, 1(1), Article 1.

Karaca, C., Aslan, G. E., Buyuktas, D., Kurunc, A., Bastug, R., & Navarro, A. (2023). Effects of Salinity Stress on Drip-Irrigated Tomatoes Grown under Mediterranean-Type Greenhouse Conditions. Agronomy, 13(1), Article 1. https://doi.org/10.3390/agronomy13010036

Kaur, H., Bedi, S., Sethi, V. P., & Dhatt, A. S. (2018). Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition, 41(12), 1547-1554. https://doi.org/10.1080/01904167.2018.1459689

Khan, M. A., Butt, S. J., khan, K. A., Nadeem, F., Yousaf, B., & Javed, H. U. (2017). Morphological and physico-biochemical characterization of various tomato cultivars in a simplified soilless media. Annals of Agricultural Sciences, 62(2), 139-143. https://doi.org/10.1016/j.aoas.2017.10.001

Khanbabaloo, N., Seyed Hajizadeh, H., & Behtash, F. (2018). Effects of salinity on taste quality and biochemical traits of four tomato varieties (Solanum lycopersicum) grown under hydroponic conditions. Journal of Horticulture and Postharvest Research, 1(Issue 1), 15-26. https://doi.org/10.22077/jhpr.2018.1096.1000

Lipan, L., Issa-Issa, H., Moriana, A., Zurita, N. M., Galindo, A., Martín-Palomo, M. J., Andreu, L., Carbonell-Barrachina, Á. A., Hernández, F., & Corell, M. (2021). Scheduling Regulated Deficit Irrigation with Leaf Water Potential of Cherry Tomato in Greenhouse and its Effect on Fruit Quality. Agriculture, 11(7), Article 7. https://doi.org/10.3390/agriculture11070669

Lu, T., Yu, H., Wang, T., Zhang, T., Shi, C., & Jiang, W. (2022). Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato. Horticulturae, 8(5), Article 5. https://doi.org/10.3390/horticulturae8050378

Mitsanis, C., Aktsoglou, D. C., Koukounaras, A., Tsouvaltzis, P., Koufakis, T., Gerasopoulos, D., & Siomos, A. S. (2021). Functional, Flavor and Visual Traits of Hydroponically Produced Tomato Fruit in Relation to Substrate, Plant Training System and Harvesting Time. Horticulturae, 7(9), Article 9. https://doi.org/10.3390/horticulturae7090311

Mngoma, M. F., Magwaza, L. S., Sithole, N. J., Magwaza, S. T., Mditshwa, A., Tesfay, S. Z., & Ncama, K. (2022). Effects of stem training on the physiology, growth, and yield responses of indeterminate tomato (Solanum lycopersicum) plants grown in protected cultivation. Heliyon, 8(5), e09343. https://doi.org/10.1016/j.heliyon.2022.e09343

Nour, V., Ionica, M. E., & Trandafir, I. (2015). Bioactive Compounds, Antioxidant Activity and Color of Hydroponic Tomato Fruits at Different Stages of Ripening. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 404-412. https://doi.org/10.15835/nbha43210081

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2023). Datos de producción agrícola y alimentación mundial. Stadistical YearBook. FAOSTAT. https://www.fao.org/faostat/en/

Olagunju, S. O., Sosanya, O. S., Oguntade, O. A., Adewusi, K. M., Soremi, P. A. S., Joda, A. O., & Nassir, A. L. (2023). Effect of NPK fertiliser on upper and basal stem diameters and implication on growth habit of tomato. Journal of the Saudi Society of Agricultural Sciences,23(1), https://doi.org/10.1016/j.jssas.2023.09.002

Olle, M., Ngouajio, M., & Siomos, A. (2012). Vegetable quality and productivity as influenced by growing medium: A review. 99(4).

Orona-Castillo, I., Del-Toro-Sánchez, C. L., Fortis-Hernández, M., Preciado-Rangel, P., Espinoza-Arellano, J. J., Rueda-Puente, E., Flores-Vázquez, M., & Cano-Ríos, P.(2022). Indicadores técnico-económicos de la producción del cultivo de tomate bajo agricultura protegida en la Comarca Lagunera, México. Biotecnia, 24(3), 70-76. https://doi.org/10.18633/biotecnia.v24i3.1721

Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 55(7), 919-929. https://doi.org/10.1080/10408398.2012.657809

Putti, F. F., de Queiroz Barcelos, J. P., Goes, B. C., Alves, R. F., Neto, M. M., da Silva, A. O., Filho, L. R. A. G., Zanetti, W. A. L., & de Souza, A. V. (2023). Effects of Water Deficit on Growth and Productivity in Tomato Crops Irrigated with Water Treated with Very Low-Frequency Electromagnetic Resonance Fields. Plants, 12(21), Article 21. https://doi.org/10.3390/plants12213721

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rusu, O.-R., Mangalagiu, I., Amăriucăi-Mantu, D., Teliban, G.-C., Cojocaru, A., Burducea, M., Mihalache, G., Roșca, M., Caruso, G., Sekara, A., & Stoleru, V. (2023). Interaction Effects of Cultivars and Nutrition on Quality and Yield of Tomato. Horticulturae, 9(5), Article 5. https://doi.org/10.3390/horticulturae9050541

Schwarz, K., Resende, J. T. V. de, Preczenhak, A. P., Paula, J. T. de, Faria, M. V., & Dias, D. M. (2013). Desempenho agronômico e qualidade físico-química de híbridos de tomateiro em cultivo rasteiro. Horticultura Brasileira, 31 (3), 410-418. https://doi.org/10.1590/S0102-05362013000300011

Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. (2019). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371. https://doi.org/10.5958/2455-7145.2018.00056.5

Siddiqui, M. W., Ayala-Zavala, J. F., & Dhua, R. S. (2015). Genotypic Variation in Tomatoes Affecting Processing and Antioxidant Attributes. Critical Reviews in Food Science and Nutrition, 55(13), 1819-1835. https://doi.org/10.1080/10408398.2012.710278

Sronsri, C., Sittipol, W., & U-yen, K. (2022). Quantity and quality of lettuce (Lactuca sativa L.) grown by a circulating hydroponic method with a Halbach array magnetizer. Journal of Food Composition and Analysis, 108, 104460. https://doi.org/10.1016/j.jfca.2022.104460

Swain, A., Roy, A., Biswas, A., Chatterjee, S., & Viswanath, M. (2021). Hydroponics in vegetable crops: A review. The Pharma Innovation Journal, 10(06), 629-634.

Szekely, I., & Jijakli, M. H. (2022). Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics. Water, 14(23), Article 23. https://doi.org/10.3390/w14233975

Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., & Ferrante, A. (2019). Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Frontiers in Plant Science, 10. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01212

Urrestarazu, M. (2013). State Of The Art And New Trends Of Soilless Culture In Spain And In Emerging Countries. Acta Horticulturae, 1013, 305-312. https://doi.org/10.17660/ActaHortic.2013.1013.37

Velázquez-González, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture, 12(5), Article 5. https://doi.org/10.3390/agriculture12050646

Verdoliva, S. G., Gwyn-Jones, D., Detheridge, A., & Robson, P. (2021). Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Scientia Horticulturae, 279, 109896. https://doi.org/10.1016/j.scienta.2021.109896

Vicente, M. H., Zsögön, A., de Sá, A. F. L., Ribeiro, R. V., & Peres, L. E. P. (2015). Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). Journal of Plant Physiology, 177, 11-19. https://doi.org/10.1016/j.jplph.2015.01.003

Xue, T., Hartikainen, H., & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237(1), 55-61. https://doi.org/10.1023/A:1013369804867

Yactayo-Chang, J. P., Acosta-Gamboa, L. M., Nepal, N., & Lorence, A. (2017). The Role of Plant High-Throughput Phenotyping in the Characterization of the Response of High Ascorbate Plants to Abiotic Stresses. En M. A. Hossain, S. Munné-Bosch, D. J. Burritt, P. Diaz-Vivancos, M. Fujita, & A. Lorence (Eds.), Ascorbic Acid in Plant Growth, Development and Stress Tolerance (pp. 321-354). Springer International Publishing. https://doi.org/10.1007/978-3-319-74057-7_13

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional