EN PRENSA. Cosmos bipinnatus Cav., ¿una alternativa a los colorantes sintéticos? estudio de su estabilidad frente a factores degradativos. EN PRENSA
PDF

Palabras clave

Cosmos bipinnatus
pigmentos bioactivos
estabilitidad
factores degradativos

Métricas de PLUMX 

Resumen

Los pigmentos de Cosmos bipinnatus fueron caracterizados para su posible aplicación como colorantes naturales. En la extracción de los pigmentos, se evaluaron tres solventes, siendo la combinación de agua y etanol la que presentó mejores resultados. Posteriormente, se evaluó la estabilidad de los pigmentos frente a diferentes condiciones de pH, temperatura y radiación luminosa durante 41 días de almacenamiento. El análisis de la cinética de degradación de las antocianinas indicó una reacción de primer orden y un tiempo de vida media de 0.7 a 63 días. Al final del almacenamiento, la formación de color polimérico aumentó por efecto del pH (1.6 - 96.2%) mientras que la concentración de antocianinas disminuyó por efecto de la temperatura (1.1 a 0 mg cyn-3-glu g-1). Respecto a la actividad antioxidante, ésta se vio afectada por las condiciones de almacenamiento, disminuyendo de 251 mg ET g-1 a 69 mg ET g-1. Referente al color, éste se conservó por más tiempo a pH 4, a diferencia de las muestras a pH 10 y 7. De acuerdo con los resultados, se sugiere utilizar el extracto de flores de Cosmos bipinnatus a pH 4, en alimentos cuyo procesamiento y almacenamiento se lleve a cabo a temperatura de refrigeración.

https://doi.org/10.15741/revbio.12.e1743
PDF

Citas

Abdul Rahman, H., Saari, N., Abas, F., Ismail, A., Mumtaz, M. W., & Abdul Hamid, A. (2017). Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. International Journal of Food Properties, 20(11), 2616-2629. https://doi.org/10.1080/10942912.2016.1247098

Amamiya, K., & Iwashina, T. (2016). Qualitative and quantitative analysis of flower pigments in chocolate Cosmos, Cosmos atrosanguineus, and its hybrids. Natural Product Communications, 11(1), 1934578X1601100122. https://doi.org/10.1177/1934578X1601100122

Amchova, P., Kotolova, H., & Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914-922. https://doi.org/10.1016/j.yrtph.2015.09.026

Bijani, S., Gharari, Z., Ahmadnia, A., Danafar, H. & Sharafi, A. (2021). A comparative study of apigenin content and antioxidant potential of Cosmos bipinnatus Transgenic Root Culture. Pharmaceutical and Biomedical Research, 7(2), 87-96. http://pbr.mazums.ac.ir/article-1-363-en.html

Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Brownmiller, C., Howard, L. R., & Prior, R. L. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. Journal of Food Science, 73(5), H72-H79. https://doi.org/10.1111/j.1750-3841.2008.00761.x

Butts-Wilmsmeyer, C. J., Mumm, R. H., Rausch, K. D., Kandhola, G., Yana, N. A., Happ, M. Ostezan, A., Wasmund, M., & Bohn, M. O. (2018). Changes in phenolic acid content in maize during food product processing. Journal of Agricultural and Food Chemistry, 66(13), 3378-3385. https://doi.org/10.1021/acs.jafc.7b05242

Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69-77. https://doi.org/10.1016/j.foodchem.2003.08.011

Chaovanalikit, A., & Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69(1), FCT67-FCT72. https://doi.org/10.1111/j.1365-2621.2004.tb17858.x

Chaves, J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. D. F., Foster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F.& Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 8, 507887. https://doi.org/10.3389/fchem.2020.507887

Chensom, S., Okumura, H., & Mishima, T. (2019). Primary screening of antioxidant activity, total polyphenol content, carotenoid content, and nutritional composition of 13 edible flowers from Japan. Preventive Nutrition and Food Science, 24(2), 171. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615357/

Cisse, M., Vaillant, F., Acosta, O., Dhuique-Mayer, C., & Dornier, M. (2009). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, Eyring, and ball models. Journal of Agricultural and Food Chemistry, 57(14), 6285–6291. https://pubs.acs.org/doi/abs/10.1021/jf900836b

Danışman, G., Arslan, E., & Toklucu, A. K. (2015). Kinetic analysis of anthocyanin degradation and polymeric colour formation in grape juice during heating. Czech Journal of Food Sciences, 33(2), 103-108. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Kinetic+analysis+of+anthocyanin+degradation+and+polymeric+colour+formation+in+grape+juice+during+heating&btnG=

Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289. https://doi.org/10.1080/10408690091189257

de Oliveira, Z. B., Silva da Costa, D. V., da Silva dos Santos, A. C., da Silva Júnior, A. Q., de Lima Silva, A., de Santana, R. C. F., ... & da Silva, S. K. R. (2024). Synthetic Colors in Food: A Warning for Children’s Health. International Journal of Environmental Research and Public Health, 21(6), 682. https://doi.org/10.3390/ijerph21060682

Dian-Nashiela, F., Noriham, A., Nooraain, H., & Azizah., A. H. (2015). Antioxidant activity of herbal tea prepared from Cosmos caudatus leaves at different maturity stages. International Food Research Journal, 22(3), 1189 – 1194. http://www.ifrj.upm.edu.my/22%20(03)%202015/(43).pdf

Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 10(12), 1967. https://doi.org/10.3390/antiox10121967

Escribano-Bailón, M. T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2004). Anthocyanins in cereals. Journal of Chromatography A, 1054(1–2), 129–141. https://doi.org/10.1016/j.chroma.2004.08.152

Fenger, J. A., Robbins, R. J., Collins, T. M., & Dangles, O. (2020). The fate of acylated anthocyanins in mildly heated neutral solution. Dyes and Pigments, 178, 108326. https://doi.org/10.1016/j.dyepig.2020.108326

Fernandes, L., Casal, S., Pereira, J. A., Malheiro, R., Rodrigues, N., Saraiva, J. A., & Ramalhosa, E. (2019). Borage, calendula, cosmos, JohnnyJumpup, and pansy flowers: Volatiles, bioactive compounds, and sensory perception. European Food Research and Technology, 245(3), 593–606. https://doi.org/10.1007/s00217-018-3183-4

Gamage, G. C. V., & Choo, W. S. (2023). Thermal and pH stability of natural anthocyanin colourant preparations from black goji berry. Food Chemistry Advances, 2, 100236. https://doi.org/10.1016/j.focha.2023.100236

Giusti, M. M. & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, (1), F1-2. https://doi.org/10.1002/0471142913.faf0102s00

Givaudan Sense Colour® (2023, 15 de diciembre) https://www.ddwcolor.com/

Gössinger, M., Moritz, S., Hermes, M., Wendelin, S., Scherbichler, H., Halbwirth, H., Stich, K., & Berghofer, E. (2009). Effects of processing parameters on colour stability of strawberry nectar from puree. Journal of Food Engineering, 90(2), 171-178. https://doi.org/10.1016/j.jfoodeng.2008.06.018

Gutiérrez, D., Mendoza, S., Serrano, V., Bah, M., Pelz, R., Balderas, P., & Leon, F. (2008). Proximate composition, mineral content, and antioxidant properties of 14 Mexican weeds used as fodder. Weed Biology and Management, 8(4), 291-296. https://doi.org/10.1111/j.1445-6664.2008.00307.x

Hager, A., Howard, L. R., Prior, R. L., & Brownmiller, C. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products. Journal of Food Science, 73(6), H134-H140. https://doi.org/10.1111/j.1750-3841.2008.00855.x

Hou, Z., Qin, P., Zhang, Y., Cui, S., & Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691-697. https://doi.org/10.1016/j.foodres.2011.07.037

Hu, N., Zheng, J., Li, W., & Suo, Y. (2014). Isolation, stability, and antioxidant activity of anthocyanins from Lycium ruthenicum Murray and Nitraria tangutorum Bobr of Qinghai-Tibetan plateau. Separation Science and Technology, 49(18), 2897-2906. https://doi.org/10.1080/01496395.2014.943770

Hubbermann, E. M., Heins, A., Stöckmann, H., & Schwarz, K. (2006). Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. European Food Research and Technology, 223, 83-90. https://link.springer.com/article/10.1007/s00217-005-0139-2

Hurtado, N. H., & Pérez, M. (2014). Identificación, estabilidad y actividad antioxidante de las antocianinas aisladas de la cáscara del fruto de capulí (Prunus serotina spp. capuli (Cav) Mc. Vaug Cav). Información Tecnológica, 25(4), 131-140. http://dx.doi.org/10.4067/S0718-07642014000400015

Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z…& He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chemistry, 274, 460-470. https://doi.org/10.1016/j.foodchem.2018.07.141

Krapfenbauer, G. H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pakistan Journal of Nutrition, 5(1), 90-92. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=634f4ea76298fc08577160e664412e683fa5bbe7

Lazze, M. C., Pizzala, R., Savio, M., Stivala, L. A., Prosperi, E. & Bianchi, L. (2003). Anthocyanins protec against DNA damage induced by ter-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutation Research, 535(1), 103-115. https://doi.org/10.1016/S1383-5718(02)00285-1

López, L.T. (2002) Flavonoides. Fitoterapia 21(4), 108-114.

Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. https://doi.org/10.1016/j.tifs.2016.03.009

Martynenko, A., & Chen, Y. (2016). Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. Journal of Food Engineering, 171, 44-51. https://doi.org/10.1016/j.jfoodeng.2015.10.008

Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47. https://doi.org/10.3390/agronomy7030047

Montibeller, M. J., de Lima Monteiro, P., Tupuna‐Yerovi, D. S., Rios, A. D. O., & Manfroi, V. (2018). Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. Journal of Food Processing and Preservation, 42(8), e13698. https://doi.org/10.1111/jfpp.13698

Morimitsu, Y., Kubota, K., Tashiro, T., Hashizume, E., Kamiyo, T. & Osawa, T. (2002). Inhibitory effect of anthocyanins and colored rice on diabetic cataract formation in the rat lenses. International Congress Series, 1245(6), 503-508. https://doi.org/10.1016/S0531-5131(02)00919-6

Mota, I. G. C., Neves, R. A. M. D., Nascimento, S. S. D. C., Maciel, B. L. L., Morais, A. H. D. A., & Passos, T. S. (2023). Artificial dyes: Health risks and the need for revision of international regulations. Food Reviews International, 39(3), 1578-1593. https://doi.org/10.1080/87559129.2021.1934694

Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical Reviews in Food Science and Nutrition, 57(15), 3243-3259. https://doi.org/10.1080/10408398.2015.1109498

Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. Journal of Agricultural and Food Chemistry, 50(1), 166-171. https://pubs.acs.org/doi/abs/10.1021/jf0108765

Orozco-Villafuerte, J., Escobar-Rojas, A., Buendía-González, L., García-Morales, C., Hernandez-Jaimes, C., & Alvarez-Ramirez, J. (2018). Evaluation of the protection and release rate of bougainvillea (Bougainvillea spectabilis) extracts encapsulated in alginate beads. Journal of Dispersion Science and Technology. https://doi.org/10.1080/01932691.2018.1496834

Patras, A., Brunton, N. P., O'Donnell, C., Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science and Technology, 21 (1), 3-11. https://doi.org/10.1016/j.tifs.2009.07.004

Pękal, A. & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776–1782. https://link.springer.com/article/10.1007/s12161-014-9814-x

Pellegrini, G., Miller, N. & Rice-Evans, C. A. (1999). Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2, 2''-azinobis (3-ethylenbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. In Packer, L. Methods in Enzymology, oxidants and antioxidants (pp. 379-389). Ed. Academic Press, New York. https://doi.org/10.1016/S0076-6879(99)99037-7

Petrova, I., Petkova, N., & Ivanov, I. (2016). Five edible flowers–valuable source of antioxidants in human nutrition. International Journal of Pharmacognosy and Phytochemical Research, 8(4), 604-610. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Five+edible+flowers%E2%80%93valuable+source+of+antioxidants+in+human+nutrition.+International&btnG=

Pires, T. C., Barros, L., Santos-Buelga, C., & Ferreira, I. C. (2019). Edible flowers: Emerging components in the diet. Trends in Food Science & Technology, 93, 244-258. https://doi.org/10.1016/j.tifs.2019.09.020

Phong, H. X., Viet, N. T., Quyen, N. T. N., Van Thinh, P., Trung, N. M., & Ngan, T. T. K. (2022). Phytochemical screening, total phenolic, flavonoid contents, and antioxidant activities of four spices commonly used in Vietnamese traditional medicine. Materials Today: Proceedings, 56, A1-A5. https://doi.org/10.1016/j.matpr.2021.12.142

Saint-Cricq de Gaulejac, N., Provost, C., & Vivas, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. Journal of Agricultural and Food Chemistry, 47(2), 425-431. https://pubs.acs.org/doi/abs/10.1021/jf980700b

Salinas-Moreno, Y., Rubio-Hernández, D., & Díaz- Velázquez, A. (2005). Extracción y uso de pigmentos del grano de maíz (Zea Mays L.) como colorantes en yogur". Archivos Latinoamericanos de Nutrición, 55(3), 293-298. https://ve.scielo.org/scielo.php?pid=S0004-06222005000300011&script=sci_arttext

Santos-Buelga, C., Gonzalez-Manzano, S., Dueñas, M., & Gonzalez-Paramas, A. M. (2012). Extraction and isolation of phenolic compounds. Methods in Molecular Biology, 864, 427-464. https://doi.org/10.1007/978-1-61779-624-1_17

Seeram, N. P., Bourquin, L. D., & Nair, M. G. (2001). Degradation products of cyanidin glycosides from tart cherries and their bioactivities. Journal of Agricultural and Food Chemistry, 49(10), 4924-4929. https://pubs.acs.org/doi/abs/10.1021/jf0107508

Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H., & Dornier, M. (2017). Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chemistry, 214, 234-241. https://doi.org/10.1016/j.foodchem.2016.07.071

Skerget, M., Kotnik, P., Hadolin, M., Rizner, A., Simonic, M. & Knez, Z. (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2), 191-198. https://doi.org/10.1016/j.foodchem.2004.02.025

Sulaiman, S. F., Sajak, A. A. B., Ooi, K. L., & Seow, E. M. (2011). Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. Journal of Food Composition and analysis, 24(4-5), 506-515. https://doi.org/10.1016/j.jfca.2011.01.020

Tan, J. B. L., Lim, Y. Y. & Lee, S. M. (2014). Rhoeo spathacea (Swartz) stearn leaves, a potential natural food colorant. Journal of Functional Foods, 7:443– 451. https://doi.org/10.1016/j.jff.2014.01.012

Tsada, T., Hono, F., Kitoh, J. & Osawa, T. (1999). Protective effects of dietary cyanidin 3-O-β-D-glucoside on liver ischemia-reperfusion injury in rats. Archives of Biochemistry and Biophysics, 368(2), 361-366. https://doi.org/10.1006/abbi.1999.1311

Tsai, P. J. & Huang, H. P. 2004. Effect of polymerization on the antioxidant capacity of anthocyanins in roselle. Food Research International Journal, 37, 313-318. https://doi.org/10.1016/j.foodres.2003.12.007

Tsai, P., Huang, H., Huang, T. (2004). Relationship between anthocyanin patterns and antioxidant capacity inmulberry wine during storage. Journal of Food Quality, 27, 497–5005. https://doi.org/10.1111/j.1745-4557.2004.00645.x

Türker, N., & Erdogdu, F. (2006). Effect of pH and temperature of extraction medium on effective diffusion coefficient of anthocyanin pigments of black carrot (Daucus carota var. L.). Journal of Food Engineering, 76(4), 579–583. https://doi.org/10.1016/j.jfoodeng.2005.06.005

Türkyılmaz, M., & Özkan, M. (2012). Kinetics of anthocyanin degradation and polymeric colour formation in black carrot juice concentrates during storage. International Journal of Food Science & Technology, 47(11), 2273-2281. https://doi.org/10.1111/j.1365-2621.2012.03098.x

Wang, S., Lin, T., Man, G., Li, H., Zhao, L., Wu, J., & Liao, X. (2014). Effects of anti-browning combinations of ascorbic acid, citric acid, nitrogen, and carbon dioxide on the quality of banana smoothies. Food and Bioprocess Technology, 7(1), 161–173. https://doi.org/10.1007/s11947-013-1107-7

Xu, K., Zhang, M., Fang, Z., & Wang, B. (2021). Degradation and regulation of edible flower pigments under thermal processing: A Review. Critical Reviews in Food Science and Nutrition, 61(6), 1038-1048. https://doi.org/10.1080/10408398.2020.1752142

Yang, Z., Han, Y., Gu, Z., Fan, G., & Chen, Z. (2008). Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. Innovative Food Science & Emerging Technologies, 9(3), 341-347. https://doi.org/10.1016/j.ifset.2007.09.001

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional