Detección de SARS-CoV-2 y agentes causantes de infecciones nosocomiales en instalaciones hospitalarias
SPA_pdf
ENG_pdf (English)

Palabras clave

SARS-CoV-2
infecciones nosocomiales
Hospital
Staphylococcus
Pseudomonas

Métricas de PLUMX 

Resumen

El virus SARS-CoV-2 ha afectado a millones de personas en todo el mundo y ha provocado millones de hospitalizaciones, lo que representa una fuente potencial de infecciones nosocomiales para el personal médico y los pacientes, así como de propagación del virus. Este estudio se centró en la detección del SARS-CoV-2, así como de Pseudomonas aeruginosa, Acinetobacter baumannii y Staphylococcus aureus en ambientes hospitalarios, incluidas las unidades de cuidados intensivos para adultos, unidades de cuidados intensivos pediátricos y unidades de cuidados COVID-19. Los resultados mostraron la presencia del virus SARS-CoV-2 en muestras de superficies de la unidad de cuidados de COVID-19, detectando la presencia de la variante Delta. Adicionalmente, los resultados mostraron la presencia de Pseudomonas aeruginosa y Staphylococcus aureus en las superficies del hospital. La presencia de SARS-CoV-2 y bacterias nosocomiales resaltan la importancia de la vigilancia microbiológica constante para prevenir las coinfecciones y la aparición de infecciones nosocomiales durante la hospitalización.

https://doi.org/10.15741/revbio.12.e1781
SPA_pdf
ENG_pdf (English)

Citas

-Ahmed, E. H., Hassan, H. M., El-Sherbiny, N. M., & Soliman, A. (2019). Bacteriological Monitoring of Inanimate Surfaces and Equipment in Some Referral Hospitals in Assiut City, Egypt. International journal of microbiology.

-Arias Flores R, Rosado Quiab U, Vargas Valerio A, Grajales Muñiz C. (2016). Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Rev Med Inst Mex Seguro Soc. 54(1):20-4.

-Bardi, T., Pintado, V., Gómez-Rojo, M., Escudero-Sanchez, R., Lopez, A.A., Diez-Remesal, Y., Martinez Castro, N., Ruiz-Garbajosa, P., Pestaña, D. (2021). Nosocomial infections associated to COVID-19 in the intensive care unit: clinical characteristics and outcome. European Journal of Clinical Microbiology & Infectious Diseases, 40:495-502. https://doi.org/10.1007/s10096-020-04142-w

-Betchen, M., Giovinco, H.M., Curry, M., Luu, J., Fraimow, H., Carabetta, V.J., Nahra, R. (2022). Evaluating the effectiveness of hospital antiseptics on multidrug-resistant Acinetobacter baumannii: Understanding the relationship between microbicide and antibiotic resistance. Antibiotics, 11(614). https://doi.org/10.3390/antibiotics11050614

-Bonil Laura, Lingas Guillermo, Coupeau Damian, Lucet Jean-Christophe, Guedj Jeremie, Visseaux Benoit y Muylkens Benoit. (2021). Survival of SARS-CoV-2 on Non-Porous Materials in an Experimental Setting Representative of Fomites. Coatings. 11: 371.

-Castañeda-Martínez, F.C., Valdespino-Padilla, M.G. (2015). Prevalencia de infecciones nosocomiales en un hospital de segundo nivel de atención en México. Revista Médica del Instituto Mexicano del Seguro Social, 53 (6):686-90.

-Cheng, K., He, M., Shu, Q., Wu, M., Chen, C., Xue, Y. (2020). Analysis of the risk factors for nosocomial bacterial infections in patients with COVID-19 in a tertiary hospital. Risk Management and Healthcare Policy, 13:2593-2599. http://doi.org/10.2147/RMHP.S277963

-Chiang, M.C., Kuo, S.C., Chen, Y.C., Lee, Y.T., Chen, T.L., Fung, C.P. (2011). Polymerase chain reaction assay for the detection of Acinetobacter baumannii in endotracheal aspirates from patients in the intensive care unit. Journal of Microbiology, Immunity and Infection, 44, 106-110, doi:10.1016/j.jmii.2010-04.003

-Choi, H.J., Kim, M.H., Cho, M.S., Kim, B.K., Kim, J.Y., Kim, C., Park, D.S (2013). Improved PCR for identification of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 97:3643-3651, DOI 10.1007/s00253-013-4709-0

-Christoff, A. P., Sereia, A., Cruz, G., Bastiani, D. C., Silva, V. L., Hernandes, C., Nascente, A., Reis, A., Viessi, R. G., Marques, A., Braga, B. S., Raduan, T., Martino, M., Menezes, F. G., & Oliveira, L. (2020). One-year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces. PloS one. 15(6), e0234127.

-COVID Data Tracker, (2023) https://covid.cdc.gov/covid-data-tracker/#new-hospital-admissions, accession date, January 25th, 2023.

-COVID-19 México, Consejo Nacional de Ciencia y Tecnología (2023) https://datos.covid-19.conacyt.mx, accession date, January 25th, 2023.

-D ́Agata EMC, Thayer V, Schaffner W. (2000). An outbreak of Acinetobacter baumannii: the importance of cross-transmission. Infection Control and Hospital Epidemiology, 21:589.

-de Sousa, N.R., Steponaviciute, L., Margerie, L., Nissen, K., Kjellin, M., Reinius, B., Salaneck, E., Udekwu, K.I., Gigliotti Rothfuchs, A. (2021). Detection and isolation of airborne SARS-CoV-2 in a hospital setting. Indoor Air, 32:e13023. https://doi.org/10.1111/ina.13023

-Doscoph, F., Agbankpe, A. J., Johnson, R. C., Houngbégnon, O., Houssou, S. C., & Bankole, H. S. (2019). Healthcare-associated infections: bacteriological characterization of the hospital surfaces in the University Hospital of Abomey-Calavi/so-ava in South Benin (West Africa). BMC infectious diseases. 19(1): 28.

- Du, Q., Zhang, D., Hu, W., Li, X., Xia, Q., Wen, T., Jia, H. (2021). Nosocomial infection of COVID-19: A new challenge for healthcare professionals (Review). International Journal of Molecular Medicine, 47:31. DOI:10.3892/ijmm.2021.4864

-Hamdan-Partida, A., González García, S., Bustos-Martínez, J. (2015). Identificación de Staphylococcus aureus utilizando como marcadores los genes nucA y femB. Revista de ciencias clínicas, http://dx.doi.org/10.1016/j.cc.2016.02.002

-International Standard. ISO 4833-2: 2013. Microbiology of food chain. Horizontal method for the enumeration of microorganisms. Part 2: Colony count at 30°C by the surface plating technique.

-Landoas, A., Cazzorla, F., Gallouche, M., Larrat, S., Nemoz, B., Giner, C., Le Maréchal, M., Pavese, P., Epalulard, O., Morand. P., Mallaret, M.-R., Landelle, C. (2021). SARS-CoV-2 nosocomial infection acquired in a French university hospital during the 1st wave of the COVID-19 pandemic, a prospective study. Antimicrobial Resistance and Infection Control, 10:114. https://doi.org/10.1186/s13756-021-00984-x

-Lane, M.A., Brownsword, E.A., Babiker, A., Ingersoll, J.M., Waggoner, J., Ayers, M., Klopman, M., Uyeki, T.M., Lindsley, W.G., Kraft, C.S. (2021). Bioaerosol sampling for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a referral center with critically ill coronavirus disease 2019 (COVID-19) patients March-May 2020. Clinical Infectious Diseases, 73 (7):e1790-4. DOI:10.1093/cid/ciaa1880

-Lane, M.A., Walawender, M., Webster, A.S., Brownsword, E.A., Ingersoll, J.M., Miller, C., Waggoner, J., Uyeki, T.M., Lindsley W.G., Kraft, C.S. (2021). Sampling for SARS-CoV-2 aerosols in hospital patient rooms. Viruses, 13:2347. https://doi.org/10.3390/v13122347

-Linde K.J., Wouters, I.M., Kluytmans, J.A.J.W., Kluytmans-van den Bergh, M.F.Q., Pas, S.D., GeurtsvanKessel, C.H., Koopmans, M.P.G., Meier, M., Meijer, P., Raben, C.R., Stiphoven, J., Tersteeg-Zijderveld, M.H.G., Heederik, D.J.J., Dohmen, W., and COCON Consortium. (2023). Detection of SARS-CoV-2 in air and on surfaces in rooms of infected nursing home residents. Annals of Work Exposures and Health, 67 (1):129-140. https://doi.org/10.1093/annweh/wxac056

-Moharir, S.C., Thota, S.C., Goel, A., Thakur, B., Tandel, D., Reddy, S.M., Vodapalli, A., Balla, G.S., Kumar, D., Naruka, D.S., Kumar, A., Tuli, A., Suravaram, S., Bingi, T.C., Srinivas, M., Mesipogu, R., Reddy, K., Khosla, S., Harshan, K.H., Tallapaka, K.B., Mishra, R.K. (2022). Detection of SARS-CoV-2 in the air in Indian hospitals and houses of COVID-19 patients. Journal of Aerosol Science, 164:106002. https://doi.org/10.1016/j.jaerosci.2022.106002

-Norma Oficial Mexicana NOM-210-SSA1-2014, Productos y servicios, Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos.

-Olson, B., Weinstein, R.A., Nathan, C., Chamberlin, W., Kabins, S.A. (1984). Epidemiology of endemic Pseudomonas aeruginosa: Why infection control efforts have failed. The journal of infectious diseases 150(6): 808-816, https://doi.org/10.1093/infdis/150.6.808

-Ong, C.C., Farhanah, S., Linn, K.Z., Tang, Y.W.,Poon, C.Y., Lim, A.Y., Tan, H.R., Binte Hamed, N.H., Huan, X., Puah, S.H., Ho, B.C.H., Soon, M.M., Ang, B.S., Vasoo, S., Chan, M., Leo, Y.S., Ng, O.T., Marimuthu, K. (2021). Nosocomial infections among COVID-19 patients: an intensive care unit surveillance data analysis. Antimicrobial Resistance and Infection Control, 10:119. https://doi.org/10.1186/s13756-021-00988-7

-Pasquarella, C., Colucci, M.E., Bizzarro, A., Veronesi, L., Affanni, P., Meschi, T., Brianti, P., Albertini, R. (2020). Detection of SARS-CoV-2 on hospital surfaces. Acta Biomedica, 9:67-78, DOI:10.23750/abm.v9li9-S.10137

-Sievert, D.M., Ricks, P., Edwards, J.R., Schneider, A., Patel, J., Srinivasan, A., Kallen A., Limbago, B., Fridkin, S. (2013). Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infetion control and Hospital Epidemiology, 34(1): 1-14, doi:10.1086/668770

-van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., and Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England journal of medicine, 382(16), 1564–1567.

-Weiner, L.M., Webb, A.K., Limbago, B., Dudeck, M.A., Patel, J., Kallen, A.J., Edwards, J.R.; Sievert, D.M. (2016). Antimicrobial-Resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infection Control and Hospital Epidemiology, 37(11):1288-1301, doi:10.1017/ice.2016.174

-World Health Organization, 2022. WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int. Accession date, January 25th 2023.

-Ye, G., Lin, H., Chen, S., Wang, S., Zeng, Z., Wang, W., Zhang, S., Rebmann, T., Li, Y., Pan, Z., Yang, Z., Wang, Y., Wang, F., Qian, Z., & Wang, X. (2020). Environmental contamination of SARS-CoV-2 in healthcare premises. The Journal of infection. 81(2): e1–e5.

-Zhou, Q., Gao, Y., Wang, X., Liu, R., Du, P., Wang, X., Zhang, X., Lu, S., Wang, Z., Shi, Q., Li, W., Ma., Y., Luo, X., Fukuoka, T., Ahn, H.S., Lee, M.S., Liu, E., Chen, Y., Luo, Z., Yang, K., on behalf of COVID-19 evidence and recommendations working group. (2020). Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Annals of Translational Medicine, 8 (10):629. http://dx.doi.org/10.21037/atm-20-3324

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional