"EN PRENSA" Bacterias utilizadas en la biorremediación de aguas contaminadas con plaguicidas: Una revisión sistemática y análisis cienciométrico "EN PRENSA"
pdf

Palabras clave

Clorpirifos
Bacterias
Plaguicidas
Biorremediación
Agua

Métricas de PLUMX 

Resumen

Entre los contaminantes más dañinos para el medio ambiente y la salud humana se destacan los contaminantes emergentes, incluyendo diversos plaguicidas utilizados ampliamente en la agricultura, los cuales presentan efectos genotóxicos y citotóxicos. La biorremediación se perfila como una solución prometedora para mitigar estos efectos adversos. En esta revisión sistemática y análisis cienciométrico, se empleó el modelo PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) para identificar las especies bacterianas más utilizadas en la biorremediación de cuerpos de agua contaminados con plaguicidas. Se utilizó la base de datos SCOPUS y herramientas como R Studio y VOSviewer para el análisis. Los resultados revelan que los plaguicidas organofosforados, especialmente el clorpirifos, son los más investigados para la degradación microbiana, destacando el uso de especies bacterianas como Pseudomonas, Enterobacter y Bacillus. Además, el análisis cienciométrico resalta la alta producción científica en países como China, Dinamarca y Egipto, proporcionando una visión integral sobre las contribuciones y colaboraciones clave en este campo. También se identificaron los principales investigadores, las comunidades científicas con mayor impacto y los centros de investigación líderes, generando un mapa detallado de las contribuciones y colaboraciones internacionales en este ámbito crítico de la biotecnología.

https://doi.org/10.15741/revbio.12.e1804
pdf

Citas

Abdel-Razek, M., Abozeid, A. M., Eltholth, M., Abouelenien, F., El-Midany, S., Moustafa, N. Y., & Mohamed, R. (2019). Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slovenian Veterinary Research , 56 (22-Suppl), 61–73. https://doi.org/10.26873/SVR-744-2019

Badii, M. H., & Varela, S. (2015). Insecticidas organofosforados: efectos sobre la salud y el ambiente, 5(28). CULCyT. https://dialnet.unirioja.es/descarga/articulo/2881125.pdf

Belal, E.-S. B., Shalaby, M. E., El-Gremi, S. M., & Gad, W. A. (2018). Biodegradation of Organochlorine Pesticides byPaenibacillussp. Strain. Environmental Engineering Science, 35(11), 1194–1205. https://doi.org/10.1089/ees.2018.0111

Bertero, A., Chiari, M., Vitale, N., Zanoni, M., Faggionato, E., Biancardi, A., & Caloni, F. (2020). Types of pesticides involved in domestic and wild animal poisoning in Italy. Science of the Total Environment, 707, 136129. https://doi.org/10.1016/j.scitotenv.2019.136129

Bhalla, G., Bhalla, B., Kumar, V., & Sharma, A. (2022). Bioremediation and phytoremediation of pesticides residues from contaminated water: a novel approach. In Pesticides remediation technologies from water and wastewater (pp. 339-363). Elsevier. https://doi.org/10.1016/B978-0-323-90893-1.00016-7

Bin, T., Mahmood, A., Asghar, W., Ito, K., & Kataoka, R. (2024). Phytomicrobiomes: A Potential Approach for Sustainable Pesticide Biodegradation. Applied Sciences, 14(7), 2740–2740. https://doi.org/10.3390/app14072740

Birolli, W. G., Borges, E. M., Nitschke, M., Luciane P. C. Romão, & Porto, M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, & Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-y

Briceño, G., Lamilla, C., Leiva, B., Levio, M., Donoso-Piñol, P., Schalchli, H., Gallardo, F., & Diez, M. C. (2020). Pesticide-tolerant bacteria isolated from a biopurification system to remove commonly used pesticides to protect water resources. PLOS ONE, 15(6), e0234865. https://doi.org/10.1371/journal.pone.0234865

Costa, A. J.,Soares da Poça, K.,Baptista, da S. P.,Correa, S. A.,dos Santos, B. S.,Santos, A. G.,Rabello, A. S.,Barros, O. U. , & Sarpa, M. (2024). Evaluation of genotoxic effects in workers and residents of rural areas exposed to pesticides in Brazil. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 898, 503795. https://doi.org/10.1016/j.mrgentox.2024.503795

Cycoń, M., Żmijowska, A., Wójcik, M., & Piotrowska-Seget, Z. (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. Journal of Environmental Management, 117, 7-16. https://doi.org/10.1016/j.jenvman.2012.12.031

Dash, D. M., & Osborne, W. J. (2023). A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. Chemosphere, 313, 137506. https://doi.org/10.1016/j.chemosphere.2022.137506

Dervis H (2019) Bibliometric analysis using bibliometrix an R package. Journal of scientometric research, 8(3), 156-160. http://doi.org/10.5530/jscires.8.3.32

Elzakey, El-Sabbagh, S. M., Eman, Adss, I. A., & Nassar, A. (2023). Bioremediation of chlorpyrifos residues using some indigenous species of bacteria and fungi in wastewater. Environmental Monitoring and Assessment, 195(6). https://doi.org/10.1007/s10661-023-11341-3

Environmental Protection Agency [EPA]. (2021). Environmental Protection Agency 2021 in Reviw. https://www.epa.ie/publications/corporate/governance/EPA_YearInReview2021_Eng.pdf

Fang, L., Xu, Y., Xu, L., Shi, T., Ma, X., Wu, X., Li, Q. X., & Hua, R. (2021). Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1T. Science of the Total Environment, 755, 142505–142505. https://doi.org/10.1016/j.scitotenv.2020.142505

García, M.D. M. (2022). Remediación sostenible de sitios contaminados con pesticidas mediante el uso de la biodegradación: Revisión sistemática. [tesis de grado]. Universidad Cesar Vallejo.

https://hdl.handle.net/20.500.12692/91972

Gauicha, J., & Bolívar, E. (2015). Contaminación ambiental por agroquímicos, formas de exposición e impactos en la salud de la población de la parroquia Sabanilla del cantón Celica. [Tesis de Maestría]. Loja: Universidad Técnica de Loja.

Giri, B. S., Geed, S., Vikrant, K., Lee, S. S., Kim, K. H., Kailasa, S. K., Vithanage, M., Chaturvedi, P., Rai, B.N., Singh, R. S. (2021). Progress in bioremediation of pesticide residues in the environment. Environmental Engineering Research, 26(6). https://doi.org/10.4491/eer.2020.446

Girón-Pérez, M. I., Mary, V. S., Rubinstein, H. R., Toledo-Ibarra, G. A., & Theumer, M. G. (2022). Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress. International Journal of Environmental Health Research, 32(10), 2309-2323. https://doi.org/10.1080/09603123.2021.1962814

Govarthanan, M., Ameen, F., Kamala-Kannan, S., Selvankumar, T., Almansob, A., Alwakeel, S. S., & Kim, W. (2020). Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: An eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere, 247, 125948. https://doi.org/10.1016/j.chemosphere.2020.125948

Hakeem, KR, Akhtar, MS y Abdullah, SNA (2016). Planta, suelo y microbios: Volumen 1: Implicaciones en la ciencia de los cultivos. Plantas, suelos y microbios: Volumen 1: Implicaciones en la ciencia de los cultivos, (abril), 1–366. https://doi.org/10.1007/978-3-319-27455-3

Hernández-Toledano, D. S., Estrada-Muñiz, E., & Vega, L. (2020). Genotoxicity of the organophosphate pesticide malathion and its metabolite dimethylthiophosphate in human cells in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 856, 503233. https://doi.org/10.1016/j.mrgentox.2020.503233

Hossain, M. E., Shahrukh, S., & Hossain, S. A. (2022). Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. En Water science and technology library (pp. 63-92). https://doi.org/10.1007/978-3-030-95542-7_4

Hylling, O., Nikbakht Fini, M., Ellegaard-Jensen, L., Muff, J., Madsen, H. T., Aamand, J., & Hansen, L. H. (2019). A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation. Science of the Total Environment, 694, 133710. https://doi.org/10.1016/j.scitotenv.2019.133710

Lara, M. A. (2021). Aplicación de técnicas microbiológicas y químicas para la recuperación de suelos contaminados por plaguicidas e hidrocarburos aromáticos policíclicos. Evaluación de su viabilidad mediante estudios de biología molecular y ecotoxicidad.[Tesis de doctorado].

Universidad de Sevilla.

Lakshmipathy, M., Abirami, S. V., & Sudhakar, T. (2018). Biodegradation of organo phosphorous chlorpyrifos using Pseudomonas aeruginosa PF1 isolated from paddy field. Research Journal of Pharmacy and Technology, 11(5), 1725. https://doi.org/10.5958/0974-360x.2018.00320.7

Leyva Morales, J. B., Valdez Torres, J. B., Bastidas Bastidas, P. J., Angulo Escalante, M. A., Sarmiento Sánchez, J. I., Barraza Lobo, A. L., Olmeda-Rubio, C., Chaidez Quiroz, C. (2017). Monitoring of pesticides residues in northwestern Mexico rivers. Acta universitaria, 27(1), 45-54. https://doi.org/10.15174/au.2017.1203

Liu, J., Pan, D., Wu, X., Chen, H., Cao, H., Li, Q. X., & Hua, R. (2018). Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp. JW-1. Science of the Total Environment, 615, 78–86. https://doi.org/10.1016/j.scitotenv.2017.09.208

Liu, J., Tan, L., Wang, J., Wang, Z., Ni, H., & Li, L. (2016). Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 157, 200–207. https://doi.org/10.1016/j.chemosphere.2016.05.031

Lourthuraj, A. A., Hatshan, M. R., & Hussein, D. S. (2022). Biocatalytic degradation of organophosphate pesticide from the wastewater and hydrolytic enzyme properties of consortium isolated from the pesticide contaminated water. Environmental Research, 205, 112553. https://doi.org/10.1016/j.envres.2021.112553

Łukaszewicz, P., Przemysław Siudak, Klaudia Kropidłowska, Caban, M., & Haliński, Ł. P. (2023). Unicellular cyanobacteria degrade sulfoxaflor to its amide metabolite of potentially higher aquatic toxicity. Chemosphere, 337, 139440–139440. https://doi.org/10.1016/j.chemosphere.2023.139440

Mali, H., Shah, C., Raghunandan, B. H., Prajapati, A. S., Patel, D. H., Trivedi, U., & Subramanian, R. B. (2023). Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences, 127, 234-250. https://doi.org/10.1016/j.jes.2022.04.023

Niaoumakis, M. (2017) Environmental, Social, and Economic Impacts. Management of Marine Plastic Debris, p. 57-126. https://doi.org/10.1016/B978-0-323-44354-8.00002-1

Nie, Z., Yan, B., Xu, Y., Awasthi, M. K., & Yang, H. (2021). Characterization of pyridine biodegradation by two Enterobacter sp. strains immobilized on Solidago canadensis L. stem derived biochar. Journal of Hazardous Materials, 414, 125577. https://doi.org/10.1016/j.jhazmat.2021.125577

Niu, H., Nie, Z., Long, Y., Guo, J., Tan, J., Bi, J., & Yang, H. (2023). Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater. Journal of Hazardous Materials, 459, 132220–132220. https://doi.org/10.1016/j.jhazmat.2023.132220

Organización de las Naciones [ONU]. (2015). Gestión de aguas residuales: informe analítico de ONU-Agua 1–52 (Organización Meteorológica Mundial, Ginebra, Suiza, 2015. www.unwater.org/publications/wastewater-management-un-water-analytical-brief/

Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO]. (2022). The State of the World’s Land and Water Resources for Food and Agriculture 2021: Systems at Breaking Point. Main Report. Roma, FAO. https://www.fao.org/land-water/solaw2021/en/

Ouyang, W., Hao, X., Wang, L., Xu, Y., Tysklind, M., Gao, X., & Lin, C. (2019). Watershed diffuse pollution dynamics and response to land development assessment with riverine sediments. Science of the Total Environment, 659, 283–292. https://doi.org/10.1016/j.scitotenv.2018.12.367

Page M J, McKenzie J E, Bossuyt P M, Boutron I, Hoffmann T C, Mulrow C D et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews BMJ 2021; 372 :n71 https://doi.org/10.1136/bmj.n7

Passatore, L., Simona, R.,Juwarkar, A.A., & Massacci, A. (2014). Phytoremediation and Bioremediation of Polychlorinated Biphenyls (PCBs): State of Knowledge and Research Perspectives. Journal of Hazardous Materials. 278,189-202 https://doi.org/10.1016/j.jhazmat.2014.05.051

Rad, S. M., Ray, A. K., & Barghi, S. (2022). Water Pollution and Agriculture Pesticide. Clean Technologies, 4(4), 1088–1102. https://doi.org/10.3390/cleantechnol4040066

Rincón-Rubio, A., Mérida-Ortega, Á., Ugalde-Resano, R., Gamboa-Loira, B., Rothenberg, S. J., González-Bejarano, F., Cebrián, M.E., & López-Carrillo, L. (2024). Carcinogenic, non-carcinogenic risk, and attributable cases to organochlorine pesticide exposure in women from Northern Mexico. Environmental Monitoring and Assessment, 196(5), 421. https://doi.org/10.1007/s10661-024-12584-4

Robles, M. D. C., Iannacone, J., Romero-Echevarría, L. M., Romero, A. R., & Dueñas, R. V. (2022). Efecto de los plaguicidas en la salud de los agricultores: una revisión sistemática de la literatura. Biotempo, 19(2), 269-280. https://doi.org/10.31381/biotempo.v19i2.4909

Saeed, M. U., Hussain, N., Sumrin, A., Shahbaz, A., Noor, S., Bilal, M., Aleya, L., & Iqbal, H. M. (2021b). Microbial bioremediation strategies with wastewater treatment potentialities – A review. The Science Of The Total Environment, 818, 151754. https://doi.org/10.1016/j.scitotenv.2021.151754

Sánchez-Alarcón, J., Milić, M., Kašuba, V., Tenorio-Arvide, M. G., Montiel-González, J. M. R., Bonassi, S., & Valencia-Quintana, R. (2021). A systematic review of studies on genotoxicity and related biomarkers in populations exposed to pesticides in Mexico. Toxics, 9(11), 272. https://doi.org/10.3390/toxics9110272

Santillán, J.Y., Lorena Rojas, N., Ghiringhelli, P.D., Nóbile, M.L., Lewkowicz, E.S. & Iribarren, A.M. (2020). Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water. Bioresource Technology, 317, 124003–124003. https://doi.org/10.1016/j.biortech.2020.124003

Schostag, M. D., Gobbi, A., Fini, M. N., Ellegaard-Jensen, L., Aamand, J., Hansen, L. H., Muff, J., & Albers, C. N. (2022). Combining reverse osmosis and microbial degradation for remediation of drinking water contaminated with recalcitrant pesticide residue. Water Research, 216, 118352. https://doi.org/10.1016/j.watres.2022.118352

Silveira-Gramont, María Isabel, Aldana-Madrid, María Lourdes, Piri-Santana, Julián, Valenzuela-Quintanar, Ana Isabel, Jasa-Silveira, Graciela, & Rodríguez-Olibarria, Guillermo. (2018). plaguicidas agricolas: un marco de referencia para evaluar riesgos a la salud en comunidades rurales en el estado de sonora, méxico. Revista internacional de contaminación ambiental, 34(1), 7-21. https://doi.org/10.20937/rica.2018.34.01.01

Singh, P., Harvinder Singh Saini, & Raj, M. (2016). Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system. Ecotoxicology and Environmental Safety, 134 (part1), 156–162. https://doi.org/10.1016/j.ecoenv.2016.07.020

Singh, A., Mahajan, M., Kothari, R., Singh, N.K. & Singh, R.P. (2023). Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies. AQUA—Water Infrastructure. Ecosystems and Society, 72(3), 363-380. https://doi.org/10.2166/aqua.2023.233

Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Sing, G., Barnwald, R.P., & Singla, N. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. Disponible en: https://doi.org/10.1016/j.ecoenv.2020.110812

Shi, Fang, Qin, Chen, Wu, & Hua. (2019). Rapid Biodegradation of the Organophosphorus Insecticide Chlorpyrifos by Cupriavidus nantongensis X1T. International Journal of Environmental Research and Public Health, 16(23), 4593. https://doi.org/10.3390/ijerph16234593

Smith, L., Inman, A., Lai, X., Zhang, H., Fanqiao, M., Jianbin, Z., Burke, S., Rahn, C., Siciliano, G., Haygarth, P. M., Bellarby, J., & Surridge, B. (2017). Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land Use Policy, 61, 208–219. https://doi.org/10.1016/j.landusepol.2016.09.028

Subsanguan, T., Vangnai, A. S., & Siripattanakul-Ratpukdi, S. (2020). Aerobic and anoxic degradation and detoxification of profenofos insecticide by Pseudomonas plecoglossicida strain PF1. Ecotoxicology and Environmental Safety, 190, 110129. https://doi.org/10.1016/j.ecoenv.2019.110129

Talwar, M. P., Mulla, S. I., & Ninnekar, H. Z. (2014). Biodegradation of organophosphate pesticide quinalphos byOchrobactrumsp. strain HZM. Journal of Applied Microbiology, 117(5), 1283–1292. https://doi.org/10.1111/jam.12627

Zhao, X., Bai, S., Li, C., Yang, J., & Ma, F. (2019). Bioaugmentation of atrazine removal in constructed wetland: Performance, microbial dynamics, and environmental impacts. Bioresource Technology, 289, 121618–121618. https://doi.org/10.1016/j.biortech.2019.121618

Zhao, X.H., & Wang, J. (2012). A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42 °C. Food Chemistry, 131(1):300-304. https://doi.org/10.1016/j.foodchem.2011.08.046

Zhang, B., Ni, Y., Liu, J., Yan, T., Zhu, X., Li, Q. X., Hua, R., Pan, D., & Wu, X. (2020). Bead-immobilized Pseudomonas stutzeri Y2 prolongs functions to degrade s-triazine herbicides in industrial wastewater and maize fields. The Science Of The Total Environment, 731, 139183. https://doi.org/10.1016/j.scitotenv.2020.139183

Zhang, Y., Xu, Z., Chen, Z., & Wang, G. (2020). Simultaneous degradation of triazophos, methamidophos and carbofuran pesticides in wastewater using an Enterobacter bacterial bioreactor and analysis of toxicity and biosafety. Chemosphere, 261, 128

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional