Resumen
Se evaluó la susceptibilidad al daño por frío y su relación con los cambios en el contenido de compuestos fenólicos y la capacidad antioxidante en cinco cultivares de mango (Ataulfo, Haden, Keitt, Kent y Tommy Atkins) con calidad de exportación. Durante el almacenamiento a temperatura de daño por frío (5 °C) y temperatura sana (13 °C), más 7 días de maduración (21 °C), se determinaron el índice de daño por frío (CII), la calidad poscosecha (color, firmeza y sólidos solubles totales (TSS)), compuestos bioactivos (fenoles y flavonoides totales) y capacidad antioxidante (ABTS, DPPH y ORAC). El cultivar Ataulfo mostró el menor IDF, mejor retención de color y mayor contenido de TSS, pero menor firmeza y mayor acumulación de fenólicos, flavonoides y capacidad antioxidante durante el período de maduración en ambas temperaturas de almacenamiento. En contraste, el cultivar Keitt presentó el mayor IDF, especialmente a 21 °C, con la mayor firmeza y el menor contenido de TSS. Los compuestos bioactivos y la capacidad antioxidante fueron bajos. Kent mostró el menor contenido de compuestos bioactivos y capacidad antioxidante. Tommy Atkins presentó los valores más bajos de luminosidad y ángulo de matiz, pero un comportamiento similar al de Haden en el resto de los parámetros. Esto indica que el aumento en los compuestos bioactivos, especialmente los flavonoides, mejora la capacidad antioxidante y podría generar una mayor tolerancia al daño por frío. Por lo tanto, Ataulfo podría almacenarse a temperaturas bajas, extendiendo su vida comercial y favoreciendo una maduración regular, mientras que Keitt no debería almacenarse a temperaturas bajas debido a su susceptibilidad y maduración irregular.
Citas
Abidi, W., Cantín, C. M., Jiménez, S., Giménez, R., Moreno, M. A., & Gogorcena, Y. (2014). Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach (Prunus persica (L.) Batsch) progeny. Journal of the Science of Food and Agriculture, 95(2), 351–8. https://doi.org/10.1002/jsfa.6727
Aghdam, M. S., Sevillano, L., Flores, F. B., & Bodbodak, S. (2013). Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables. Scientia Horticulturae, 160, 54–64. https://doi.org/10.1016/j.scienta.2013.05.020
AOAC [Association of Official Analytical Chemists]. (2012) Official Methods of Analysis. 16th ed. S William (ed). Published by the Association of Official Analytical Chemists. Washington, D.C. USA. CD-Rom. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf
Cantre, D., Herremans, E., Verboven, P., & Nicolaï, B. M. (2014). Characterization of the 3-D cellular structure of mango (Mangifera indica L. cv. Carabao) during chilling injury development using X-ray computed microtomography. Inside Food Symposium, 9–12. https://doi.org/10.1016/j.ifset.2013.12.008
Chagas, M. S. Behrens, M. D. Moragas-Tellis, C. J., Penedo, X. M, Silva, A. R., & Gonçalves-de-Albuquerque, G. F. (2022). Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, 2022 (1), 9966750 https://doi.org/10.1155/2022/9966750
Dea, S., Brecht, J. K., Nunes, M. C., & Baldwin, E. A. (2010). Occurrence of Chilling Injury in Fresh-Cut ‘Kent’ Mangoes. Postharvest Biology and Technology, 57(1), 61–71. https://doi.org/10.1016/j.postharvbio.2010.02.005
Ding, Z. S., Tian, S. P., Zheng, X. L., Zhou, Z. W., & Xu, Y. (2007). Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum, 130(2), 112–121. https://doi.org/10.1111/j.1399-3054.2007.00893.x
Gao, H. Zhang, Z., Lv, X., Cheng, N., Peng, B. X., & Cao, W. (2016). Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Postharvest Biology and Technology, 111, 390–397. https://doi.org/10.1016/j.postharvbio.2015.07.031
Ghasemnezhad, M., Marsh, K., Shilton, R., Babalar, M., & Woolf, A. (2008). Effect of hot water treatments on chilling injury and heat damage in “satsuma” mandarins: Antioxidant enzymes and vacuolar ATPase, and pyrophosphatase. Postharvest Biology and Technology, 48(3), 364–371. https://doi.org/10.1016/j.postharvbio.2007.09.014
Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., & Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 62(8), 2465–2483. https://doi.org/10.1093/jxb/erq442
Junmatong, C., Faiyue, B., Rotarayanont, S., Uthaibutra, J., Boonyakiatc D., & Saengnil K. (2015). Cold storage in salicylic acid increases enzymatic and non-enzymatic antioxidants of Nam Dok Mai No. 4 mango fruit, ScienceAsia, 41, 12–21. doi: https://doi.org/10.2306/scienceasia1513-1874.2015.41.012
Kananke, M. D., Singh, Z., & Johnson, S. K. (2018). Cold storage temperatures and durations affect the concentrations of lupeol, mangiferin, phenolic acids and other health-promoting compounds in the pulp and peel of ripe mango fruit. Postharvest Biology and Technology, 139, 91-98. https://doi.org/10.1016/j.postharvbio.2017.12.003
Kim, Y., Lounds-Singleton, A. J., & Talcott, S. T. (2009). Antioxidant phytochemical and quality changes associated with hot water immersion treatment of mangoes (Mangifera indica L.). Food Chemistry, 115(3), 989–993. https://doi.org/10.1016/j.foodchem.2009.01.019
Kondo, S., Kittikorn, M., & Kanlayanarat, S. (2005). Preharvest antioxidant activities of tropical fruit and the effect of low temperature storage on antioxidants and jasmonates. Postharvest Biology and Technology, 36(3), 309–318. https://doi.org/10.1016/j.postharvbio.2005.02.003
Lederman, I. E., Zauberman, G., Weksler, A., Ilana, R., & Fuchs, Y. (1997). Ethylene-forming capacity during cold storage and chilling injury development in “Keitt” mango fruit. Postharvest Biology and Technology, 10 (1), 107–112. https://doi.org/10.1016/S0925-5214(96)00060-9
Li, B., Zhang, C., Cao, B., Qin, G., Wang, W., & Tian, S. (2012). Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43(6), 2469–2480. https://doi.org/10.1007/s00726-012-1327-6
López-Angulo, G., Montes-Avila, J., Díaz-Camacho, S. P., Vega-Aviña, R., Ahumada-Santos, Y. P., & Delgado-Vargas, F. (2019). Chemical composition and antioxidant, α-glucosidase inhibitory and antibacterial activities of three Echeveria D C. species from Mexico. Arabian Journal of Chemistry, 12(8), 1964-1973. https://doi.org/10.1016/j.arabjc.2014.11.050
López-López, M. E., López-Valenzuela, J. A., Delgado-Vargas, F., López- Angulo, G., Carrillo-López, A., Ayón-Reyna, L. E., & Vega-García, M. O. (2018). A treatment combining hot water with calcium lactate improves the chilling injury tolerance of mango fruit. HortScience, 53(2), 217–223. https://doi.org/10.21273/HORTSCI12575-17
Maldonado-Celis, M. E., Yahia, E. M. Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Guerrero-Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Frontiers in Plant Science, 10(1073) https://doi.org/10.3389/fpls.2019.01073
Manthey, J. A., & Perkinsveazie, P. (2009). Levels of -carotene, ascorbic acid, and total phenols in the pulp of five commercial varieties of mango (Mangifera indica L.). Proceedings of the Florida State Horticultural Society, 122, 303–307. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183248110#core-collateral-purchase-access
Moo-Huchin, V. M., Estrada-Mota, I., Estrada-León, R., Cuevas-Glory, L., Ortiz-Vázquez, E., Vargas y Vargas, M. D., & Sauri-Duch, E. (2014). Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chemistry, 152, 508–515. https://doi.org/10.1016/j.foodchem.2013.12.013
Montalvo, E., García, H. S., Tovar, B., & Mata, M. (2007). Application of exogenous ethylene on postharvest ripening of refrigerated ‘Ataulfo’ mangoes. LWT - Food Science and Technology, 40(8), 1466-1472. https://doi.org/10.1016/j.lwt.2006.03.014
Nair, S., & Singh, Z. (2003). Pre-storage ethrel dip reduces chilling injury , enhances respiration rate , ethylene production and improves fruit quality of “Kensington” mango, Journal of Food Agriculture and Environment, 1(2), 93-97. https://hdl.handle.net/20.500.11937/38466
Noratto, G. D., Bertoldi, M. C., Krenek, K., Talcott, S. T., Stringheta, P. C., & Mertens-Talcott, S. U. (2010). Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. Journal of Agricultural and Food Chemistry, 58(7), 4104–4112. https://doi.org/10.1021/jf903161g
Palafox-Carlos, H., Yahia, E., Islas-osuna, M. A., Gutierrez-Martinez, P., Robles-Sánchez, M., & González, E.A. (2012). Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity. Scientia Horticulturae, 135, 7–13.
Rathod, N. B., Elabed, N., Punia, S., Ozogul, F., Kim, S. K., & Rocha, J. M. (2023). Recent developments in polyphenol applications on human health: A review with current knowledge. Plants, 12(16),1217. https://doi.org/10.3390/plants12061217
Razzaq, K., Khan, A. S., Malik, A. U., Shahid, M., & Ullah, S. (2014). Role of putrescine in regulating fruit softening and antioxidative enzyme systems in “Samar Bahisht Chaunsa” mango. Postharvest Biology and Technology, 96, 23–32. https://doi.org/10.1016/j.postharvbio.2014.05.003
Robles-Sánchez, R. M., Islas-Osuna, M., Astiazarán-García, H., Vázquez-Ortiz, F., Martín-Belloso, O., Gorinstein, S., & González-Aguilar, G. (2009). Quality index, consumer acceptability, bioactive compounds, and antioxidant activity of fresh-cut “ataulfo” mangoes (Mangifera indica L.) as affected by low-temperature storage. Journal of Food Science, 74(3), S126-S134. https://doi.org/10.1111/j.1750-3841.2009.01104.x
Romero–Gomezcaña, N.R., Sánchez–García, P., Rodríguez–Alcázar, J. and Saucedo–Veloz, C. (2006). Aplicación foliar de calcio y su relación con la calidad en frutos de mango cv. Haden. Calcium foliar sprinkling and its relation with fruit quality of mangoes cv. Haden. Agricultura Técnica en México, 32(1), 5-15. https://www.scielo.org.mx/pdf/agritm/v32n1/v32n1a1.pdf
Sayyari, M., Castillo, S., Valero, D., Díaz-Mula, H. M. & Serrano, M. (2011). Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biology and Technology, 60(2), 136–142. https://doi.org/10.1016/j.postharvbio.2010.12.012
Shivashankara, K.S., Isobe, S., Al-Haq, M.I., Takenaka, M., & Shiina, T. (2004). Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of Irwin mango fruits stored at low temperature after high electric field pretreatment. Journal of Agricultural and Food Chemistry, 52(5), 1281–1286. https://doi.org/10.1021/jf030243l
Siddiq, M., Sogi, D. S., & Dolan, K. D. (2013). Antioxidant properties, total phenolics, and quality of fresh-cut “Tommy Atkins” mangoes as affected by different pre-treatments. Food Science and Technology, 53(1), 156–162. http://doi.org/10.1016/j.lwt.2013.01.017
Singh S. P. & Singh Z. (2012). Role of membrane lipid peroxidation, enzimatic and non-enzymatic antioxidative systems in the development of chilling injury in japanese plums. Journal of American Society for Horticultural Science, 136(6), 473-481. https://doi.org/10.21273/JASHS.137.6.473
Sivankalyani, V., Feygenberg, O., Maorer, D., Zaaroor, M., Fallik, E., & Alkan, N. (2015). Combined treatments reduce chilling injury and maintain fruit quality in avocado fruit during cold quarantine. Plos One, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0140522
Tomás-Barberán, F. A. & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food Agriculture, 81(9), 853-876. https://doi.org/10.1002/jsfa.885
Zaharah, S. S., & Singh, Z. (2011). Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biology and Technology, 60(3), 202-210. https://doi.org/10.1016/j.postharvbio.2011.01.011
Zhao, Z., Jiang, W., Cao, J., Zhao, Y., & Gu, Y. (2006). Effect of cold-shock treatment on chilling injury in mango (Mangifera indica L. cv. “Wacheng”) fruit. Journal of the Science of Food and Agriculture, 86(14), 2458–2462. https://doi.org/10.1002/jsfa.2640

Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional