Desarrollo de un método mediante Cromatografía de Líquidos de Alta Eficiencia acoplado a un detector de arreglo de diodos (HPLC-DAD) y su validación para la cuantificación de triclosán en pasta de dientes.
SPA_pdf
ENG_pdf (English)

Palabras clave

Contaminantes emergentes
alterador endocrino
HPLC-DAD
triclosán
productos de cuidado personal

Métricas de PLUMX 

Resumen

El triclosán (TCS) se utiliza en muchos productos para el cuidado de la salud como agente antimicrobiano y desinfectante de amplio espectro; sin embargo, actualmente se considera un contaminante emergente. El presente estudio tuvo como objetivo desarrollar un método de cromatografía de líquidos de alta eficiencia acoplado a un detector de arreglo de diodos para la determinación de TCS en pasta de dientes. El desarrollo del método implicó la optimización de la separación y la preparación de muestras. Para la optimización de la separación cromatográfica, se abordaron diferentes columnas de FR y fases móviles acuosas. La separación cromatográfica optimizada se logró en aproximadamente 3 minutos utilizando una columna Symmetry C18 a 30 °C, velocidad de flujo de 0.6 mLl/min y detección de longitud de onda de 225 nm. Para optimizar la preparación de la muestra de pasta de dientes, se eligió una metodología de superficie de respuesta que utiliza un diseño factorial fraccional Box-Behnken. El tratamiento de la muestra consistió en lixiviar 0.2 g de muestra mediante sonicación durante 7 minutos utilizando 2 mL de metanolMeOH. El método desarrollado fue validado de acuerdo con la Conferencia Internacional sobre Armonización (ICH, 1996/2005) y las directrices de la Decisión de la Comisión Europea 200/657/CE. El método analítico desarrollado se determinó como rápido, económico, lineal, sensible, preciso y robusto y permitió cuantificar TCS en diferentes productos de salud.

https://doi.org/10.15741/revbio.10.e1410
SPA_pdf
ENG_pdf (English)

Citas

Abril, C., Santos, J. L., Malvar, J. L., Martín, J., Aparicio, I., & Alonso, E. (2018). Determination of perfluorinated compounds, bisphenol A, anionic surfactants and personal care products in digested sludge, compost and soil by liquid-chromatography-tandem mass spectrometry. Journal of Chromatography A, 1576, 34-41. https://doi.org/10.1016/j.chroma.2018.09.028

Ahmad, A., Raish, M., Alkharfy, K., Mohsin, K., & Shakeel, F. (2016). Box-Behnken supported development and validation of robust rp-hplc method: an application in estimation of pravastatin in bulk and pharmaceutical dosage form. Journal of the Chilean Chemical Society, 61(2), 2963-2967. http://dx.doi.org/10.4067/S0717-97072016000200022

Alam, P., Shakeel, F., Taleuzzaman, M., Foudah, A. I., Alqarni, M.H., Aljaba, T. M., Alshehri, S., & Ghoneim, M. M. (2022). Box-Behnken Design (BBD) Application for Optimization of Chromatographic Conditions in RP-HPLC Method Development for the Estimation of Thymoquinone in Nigella sativa Seed Powder. Processes, 10(6), 1082. https://doi.org/10.3390/pr10061082

Aminu, N., Chan, S. Y., Khan, N. H., & Toh, S. M. (2018). Concurrent determination of triclosan and flurbiprofen by high-performance liquid chromatography in simulated saliva and its application in dental nanogel formulation. Acta Cromatographica, 30(4), 219-224. https://doi.org/10.1556/1326.2017.00286

Baranowska, I., Wojciechowska, I., Solarz, N., & Ikrutysza, E. (2014). Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using Fast Liquid Chromatography. Journal of Chromatographic Sciences, 52(1), 88-94. https://doi.org/10.1093/chromsci/bms210

Bever, C. S., Rand, A. A., Nording, M., Taft, D., Kalanetra, K. M., Mills, D. A., Breck, M. A., Smilowitz, J. T., German, J. B., & Hammock, B. D. (2018). Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere, 203, 467-473. https://doi.org/10.1016/j.chemosphere.2018.03.186

Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Urinary Concentrations of Triclosan in the U.S. Population: 2003–2004. Environmental Health Perspectives, 116(3), 303-307. https://doi.org/10.1289/ehp.10768

Chiapetta, S. C., de Oliveira, E. C. B., Olivier, B. C., Mercante, L. A., Henriques, D. M., & Pereira-Netto, A. D. (2011). Intralaboratory validation, comparison and application of HPLC-UV-DAD methods for simultaneous determination of benzalkonium chloride, chlorexidine digluconate and triclosan. Journal of the Brazilian Chemical Society, 22(10), 1913-1920. https://doi.org/10.1590/S0103-50532011001000012

Chtourou, M., Mallek, M., Dalmau, M., Mamo, J., Santos-Clotas, E., Salah, A. B., Walha, K., Salvadó, V., & Monclús, H. (2018). Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Safety and Environmental Protection, 118, 1-9. https://doi.org/10.1016/j.psep.2018.06.019

Czyrski, A., & Sznura, J. (2019). The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Scientific reports, 9, 19458. https://doi.org/10.1038/s41598-019-55761-z

Dann, A. B., & Hontela, A. (2011). Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 31(4), 285-311 https://doi.org/10.1002/jat.1660

Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., & Surampalli, R. Y. (2015). Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health, 12(5), 5657-5684. https://doi.org/10.3390/ijerph120505657

García-Yerena, G., Sánchez, A. J., Galindo-Reyes, E., & Cerda-Cristerna, B. (2016). Triclosan in Toothpaste,Is There Any Real Risk for the Health?. Odovtos-International Journal of Dental Sciences, 18(2), 41-49. https://doi.org/10.15517/ijds.v0i0.24102

International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use (ICH). (1996/2005). Validation of Analytical Procedures: Text and Methodology. ICH, Geneva.

Jackson, E. N., Rowland-Faux, L., James, M. O., & Wood, C. E. (2018). Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicology Letters, 294, 116-121. https://doi.org/10.1016/j.toxlet.2018.05.014

Liu, T., & Wu, D. (2012). High Performance Liquid Chromatographic Determination of triclosan and triclocarban in cosmetic products. International Journal of Cosmetic Science, 34, 489-494. https://doi.org/10.1111/j.1468-2494.2012.00742.x

Mahitha, P., Gurupadayya, B. M. & Chandan, R.S. (2014). Analytical method development and validation of triclosan in dental formulations. International Journal of Pharmaceutical Sciences and Research, 5(9), 3810-3816. https://doi.org/10.13040/IJPSR.0975-8232.5(9).3810-16

Mutalik, S. P., Mullick, P., Pandey, A., Kulkarni, S., & Mutalik, S. (2021). Box–Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. Journal of Separation Sciences, 44(15), 2917-2931. https://doi.org/10.1002/jssc.202100152

Official Journal of the European Communities. (2002). 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, L 221, 8-36. http://data.europa.eu/eli/dec/2002/657/oj

Olaniyan, L. W., Mkwetshana, N., & Okoh, A. I. (2016). Triclosan in water, implications for human and environmental health. Springerplus, 5, 1639. https://doi.org/10.1186/s40064-016-3287-x

Paul, K. B., Hedge, J. M., Devito, M. J., & Crofton, K. M. (2010). Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environmental Toxicology and Chemistry, 29(12), 2840-2844. https://doi.org/10.1002/etc.339

Piccoli, A., Fiori, J., Andrisano, V., & Orioli, M. (2002). Determination of triclosan in personal health care products by liquid chromatography (HPLC). Il Farmaco, 57(5), 369-372. https://doi.org/10.1016/S0014-827X(02)01225-9

Pinckney, J. L., Thompson, L., & Hylton, S. (2017). Triclosan alterations of estuarine phytoplankton community structure. Marine Pollution Bulletin, 119(1), 162-168. https://doi.org/10.1016/j.marpolbul.2017.03.056

Sabaliunas, D., Webb, S. F., Hauk, A., Jacob, M., & Eckhoff, W. S. (2003). Environmental fate of Triclosan in the River Aire Basin, UK. Water Research, 37(13), 3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7

Sanches-Silva, A., Sendón-García, R., López-Hernández, J., & Paseiro-Losada, P. (2005). Determination of triclosan in foodstuffs. Journal of Separation Science, 28(1), 65-72. https://doi.org/10.1002/jssc.200401845

Shen, J. Y., Chang, M. S., Yang, S. H., & Wu, G. J. (2012). Simultaneous determination of triclosan, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS. Journal of Separations Sciences, 35(19), 2544-2552. https://doi.org/10.1002/jssc.201200181

Silva, D. C., Araújo, C. V., López-Doval, J. L., Neto, M. B., Silva, F. T., Paiva, T. C., & Pompêo, M. L. (2017). Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a non-forced system. Chemosphere, 184, 329-336. https://doi.org/10.1016/j.chemosphere.2017.06.002

Singer, H., Muller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environmental Science & Technology, 36(23), 4998-5004. https://doi.org/10.1021/es025750i

Weiß, C. H. (2007). StatSoft, Inc., Tulsa, OK.: STATISTICA, Version 8. AStA Advances in Statistical Analysis, 91(3), 339–341.https://doi.org/10.1007/s10182-007-0038-x

Witorsch, R. (2014). Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Critical Reviews in Toxicology, 44(4), 535-555. https://doi.org/10.3109/10408444.2014.910754

Wu, J. L., Lam, N. P., Martens, D., Kettrup, A., & Cai, Z. (2007). Triclosan determination in water related to wastewater treatment. Talanta, 72(5), 1650-1654. https://doi.org/10.1016/j.talanta.2007.03.024

Yueh, M. F., & Tukey, R. H. (2016). Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annual Review of Pharmacology and Toxicology, 56, 251-272. https://doi.org/10.1146/annurev-pharmtox-010715-103417

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional