Abstract
Triclosan (TCS) is used in many health care products as a broad-spectrum antimicrobial and disinfectant agent; however, it is currently considered an emerging pollutant. The present study aimed to develop an analytical HPLC method coupled to a Diode Array Detector for the TCS determination in toothpaste. Method development involved the optimization of separation and sample preparation. For chromatographic separation optimization, different RP columns and aqueous mobile phases were addressed. The optimized chromatographic separation was achieved in around 3 minutes using a Symmetry C18 column at 30 °C, 0.6 mL/min flow-rate, and 225 nm wavelength detection. For toothpaste sample preparation optimization a response surface methodology using a Box-Behnken fractional factorial design was chosen. The sample treatment consisted of leaching 0.2 g sample by sonication for 7 minutes using 2 mL of MeOH. According to the International Conference on Harmonization (ICH, 1996/2005) and European Commission Decision 200/657/EC guidelines, the developed method was validated. The developed analytical method was found fast, economic, linear, sensitive, precise, and robust and allowed to quantify TCS in different healthcare products.
References
Abril, C., Santos, J. L., Malvar, J. L., Martín, J., Aparicio, I., & Alonso, E. (2018). Determination of perfluorinated compounds, bisphenol A, anionic surfactants and personal care products in digested sludge, compost and soil by liquid-chromatography-tandem mass spectrometry. Journal of Chromatography A, 1576, 34-41. https://doi.org/10.1016/j.chroma.2018.09.028
Ahmad, A., Raish, M., Alkharfy, K., Mohsin, K., & Shakeel, F. (2016). Box-Behnken supported development and validation of robust rp-hplc method: an application in estimation of pravastatin in bulk and pharmaceutical dosage form. Journal of the Chilean Chemical Society, 61(2), 2963-2967. http://dx.doi.org/10.4067/S0717-97072016000200022
Alam, P., Shakeel, F., Taleuzzaman, M., Foudah, A. I., Alqarni, M.H., Aljaba, T. M., Alshehri, S., & Ghoneim, M. M. (2022). Box-Behnken Design (BBD) Application for Optimization of Chromatographic Conditions in RP-HPLC Method Development for the Estimation of Thymoquinone in Nigella sativa Seed Powder. Processes, 10(6), 1082. https://doi.org/10.3390/pr10061082
Aminu, N., Chan, S. Y., Khan, N. H., & Toh, S. M. (2018). Concurrent determination of triclosan and flurbiprofen by high-performance liquid chromatography in simulated saliva and its application in dental nanogel formulation. Acta Cromatographica, 30(4), 219-224. https://doi.org/10.1556/1326.2017.00286
Baranowska, I., Wojciechowska, I., Solarz, N., & Ikrutysza, E. (2014). Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using Fast Liquid Chromatography. Journal of Chromatographic Sciences, 52(1), 88-94. https://doi.org/10.1093/chromsci/bms210
Bever, C. S., Rand, A. A., Nording, M., Taft, D., Kalanetra, K. M., Mills, D. A., Breck, M. A., Smilowitz, J. T., German, J. B., & Hammock, B. D. (2018). Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere, 203, 467-473. https://doi.org/10.1016/j.chemosphere.2018.03.186
Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Urinary Concentrations of Triclosan in the U.S. Population: 2003–2004. Environmental Health Perspectives, 116(3), 303-307. https://doi.org/10.1289/ehp.10768
Chiapetta, S. C., de Oliveira, E. C. B., Olivier, B. C., Mercante, L. A., Henriques, D. M., & Pereira-Netto, A. D. (2011). Intralaboratory validation, comparison and application of HPLC-UV-DAD methods for simultaneous determination of benzalkonium chloride, chlorexidine digluconate and triclosan. Journal of the Brazilian Chemical Society, 22(10), 1913-1920. https://doi.org/10.1590/S0103-50532011001000012
Chtourou, M., Mallek, M., Dalmau, M., Mamo, J., Santos-Clotas, E., Salah, A. B., Walha, K., Salvadó, V., & Monclús, H. (2018). Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Safety and Environmental Protection, 118, 1-9. https://doi.org/10.1016/j.psep.2018.06.019
Czyrski, A., & Sznura, J. (2019). The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Scientific reports, 9, 19458. https://doi.org/10.1038/s41598-019-55761-z
Dann, A. B., & Hontela, A. (2011). Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 31(4), 285-311 https://doi.org/10.1002/jat.1660
Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., & Surampalli, R. Y. (2015). Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. International Journal of Environmental Research and Public Health, 12(5), 5657-5684. https://doi.org/10.3390/ijerph120505657
García-Yerena, G., Sánchez, A. J., Galindo-Reyes, E., & Cerda-Cristerna, B. (2016). Triclosan in Toothpaste,Is There Any Real Risk for the Health?. Odovtos-International Journal of Dental Sciences, 18(2), 41-49. https://doi.org/10.15517/ijds.v0i0.24102
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use (ICH). (1996/2005). Validation of Analytical Procedures: Text and Methodology. ICH, Geneva.
Jackson, E. N., Rowland-Faux, L., James, M. O., & Wood, C. E. (2018). Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicology Letters, 294, 116-121. https://doi.org/10.1016/j.toxlet.2018.05.014
Liu, T., & Wu, D. (2012). High Performance Liquid Chromatographic Determination of triclosan and triclocarban in cosmetic products. International Journal of Cosmetic Science, 34, 489-494. https://doi.org/10.1111/j.1468-2494.2012.00742.x
Mahitha, P., Gurupadayya, B. M. & Chandan, R.S. (2014). Analytical method development and validation of triclosan in dental formulations. International Journal of Pharmaceutical Sciences and Research, 5(9), 3810-3816. https://doi.org/10.13040/IJPSR.0975-8232.5(9).3810-16
Mutalik, S. P., Mullick, P., Pandey, A., Kulkarni, S., & Mutalik, S. (2021). Box–Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. Journal of Separation Sciences, 44(15), 2917-2931. https://doi.org/10.1002/jssc.202100152
Official Journal of the European Communities. (2002). 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, L 221, 8-36. http://data.europa.eu/eli/dec/2002/657/oj
Olaniyan, L. W., Mkwetshana, N., & Okoh, A. I. (2016). Triclosan in water, implications for human and environmental health. Springerplus, 5, 1639. https://doi.org/10.1186/s40064-016-3287-x
Paul, K. B., Hedge, J. M., Devito, M. J., & Crofton, K. M. (2010). Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environmental Toxicology and Chemistry, 29(12), 2840-2844. https://doi.org/10.1002/etc.339
Piccoli, A., Fiori, J., Andrisano, V., & Orioli, M. (2002). Determination of triclosan in personal health care products by liquid chromatography (HPLC). Il Farmaco, 57(5), 369-372. https://doi.org/10.1016/S0014-827X(02)01225-9
Pinckney, J. L., Thompson, L., & Hylton, S. (2017). Triclosan alterations of estuarine phytoplankton community structure. Marine Pollution Bulletin, 119(1), 162-168. https://doi.org/10.1016/j.marpolbul.2017.03.056
Sabaliunas, D., Webb, S. F., Hauk, A., Jacob, M., & Eckhoff, W. S. (2003). Environmental fate of Triclosan in the River Aire Basin, UK. Water Research, 37(13), 3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7
Sanches-Silva, A., Sendón-García, R., López-Hernández, J., & Paseiro-Losada, P. (2005). Determination of triclosan in foodstuffs. Journal of Separation Science, 28(1), 65-72. https://doi.org/10.1002/jssc.200401845
Shen, J. Y., Chang, M. S., Yang, S. H., & Wu, G. J. (2012). Simultaneous determination of triclosan, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS. Journal of Separations Sciences, 35(19), 2544-2552. https://doi.org/10.1002/jssc.201200181
Silva, D. C., Araújo, C. V., López-Doval, J. L., Neto, M. B., Silva, F. T., Paiva, T. C., & Pompêo, M. L. (2017). Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a non-forced system. Chemosphere, 184, 329-336. https://doi.org/10.1016/j.chemosphere.2017.06.002
Singer, H., Muller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environmental Science & Technology, 36(23), 4998-5004. https://doi.org/10.1021/es025750i
Weiß, C. H. (2007). StatSoft, Inc., Tulsa, OK.: STATISTICA, Version 8. AStA Advances in Statistical Analysis, 91(3), 339–341.https://doi.org/10.1007/s10182-007-0038-x
Witorsch, R. (2014). Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Critical Reviews in Toxicology, 44(4), 535-555. https://doi.org/10.3109/10408444.2014.910754
Wu, J. L., Lam, N. P., Martens, D., Kettrup, A., & Cai, Z. (2007). Triclosan determination in water related to wastewater treatment. Talanta, 72(5), 1650-1654. https://doi.org/10.1016/j.talanta.2007.03.024
Yueh, M. F., & Tukey, R. H. (2016). Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. Annual Review of Pharmacology and Toxicology, 56, 251-272. https://doi.org/10.1146/annurev-pharmtox-010715-103417
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.