Caracterización genética de especies acuícolas mediante paneles de SNPs de baja densidad.
SPA_pdf
ENG_pdf (English)

Palabras clave

Diversidad genética
Marcadores moleculares
Análisis de parentesco
Selección genética

Métricas de PLUMX 

Resumen

El sector acuícola presenta un elevado crecimiento con una proyección a alcanzar 106 millones de toneladas en el 2030 mundialmente. Para ello, se requiere la implementación de programas de manejo y selección genética basados en el monitoreo de la diversidad genética, la endogamia y el pedigrí de los lotes de cultivo. En este estudio se desarrolló la plataforma 2bRAD para caracterizar genéticamente especies de cultivo acuícola con paneles de baja densidad de 150 a 500 marcadores genéticos tipo SNPs (Polimorfismos de Nucleótido Simple). La implementación de la técnica 2bRAD con corte del ADN con la enzima BcgI y el uso de adaptadores con cuatro bases selectivas, generó paneles de baja densidad de 114 y 159 SNPs para el ostión del Pacífico Crassostrea gigas y el jurel Seriola rivoliana, respectivamente. Estos paneles se validaron con pruebas de parentesco y paternidad, por lo que son adecuados para estudios de diversidad genética y seguimiento del pedigrí de lotes de cultivo. El panel obtenido para el camarón Penaeus (Litopenaeus) vannamei fue de mediana densidad (2,874 SNPs), por lo que tiene otro tipo de aplicaciones. La plataforma 2bRAD desarrollada es potencialmente aplicable a otras especies de peces marinos de cultivo como huachinango, pargo lunarejo y totoaba.

https://doi.org/10.15741/revbio.11.e1534
SPA_pdf
ENG_pdf (English)

Citas

Amparo Venegas, A. O. (2019). Aplicación de la tecnología de biofloc (BFT) al cultivo de Totoaba macdonaldi. [Tesis de Maestría en Ciencias, Centro de Investigación Científica y de Educación Superior de Ensenada]. http://cicese.repositorioinstitucional.mx/jspui/handle/1007/2762

Barbanti, A., Torrado, H., Macpherson, E., Bargelloni, L., Franch, R., Carreras, C., & Pascual, M. (2020). Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Molecular Ecology Resources, 20(3), 795–806. https://doi.org/10.1111/1755-0998.13144

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Campbell, N. R., Harmon, S. A., & Narum, S. R. (2015). Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Molecular Ecology Resources, 15(4), 855-867. https://doi.org/10.1111/1755-0998.12357

Catchen, M. J., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, H. J. (2011). Stacks: building and genotyping loci de novo from short-reads sequences. G3: Genes Genomes Genetics, 1(3), 171–182. https://doi.org/10.1534/g3.111.000240

Chambers, E. A., Tarvin, R. D., Santos, J. C., Ron, S. R., Betancourth-Cundar, M., Hillis, D. M., Matz, M. V., & Cannatella, D. C. (2023). 2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics. Ecology and Evolution, 13(3), e9842. https://doi.org/10.1002/ece3.9842

CONAPESCA. (2021). Anuario Estadístico de Acuacultura y Pesca, Edición 2021. Comisión Nacional de Acuacultura y Pesca, México. https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., De Pristo, M. A., Handsaker, R., Lunter, G., Marth, G., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools, Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Durland, E., De Wit, P., & Langdon, C. (2021). Temporally balanced selection during development of larval Pacific oysters (Crassostrea gigas) inherently preserves genetic diversity within offspring. Proceedings of the Royal Society B, 288(1958), 20203223. https://doi.org/10.1098/rspb.2020.3223

Escárcega Rodríguez, S. (2018). Preselección de especies para la piscicultura marina en el Pacífico Sur de México. Ciencia Ergo Sum, 25(1), 1-31. https://www.redalyc.org/journal/104/10453975009/html/

FAO. (2019). The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. https://www.fao.org/aquatic-genetic-resources/activities/sow/en/

FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en

Gjerde, B. (2010). Design of breeding plans. In Gjedrem, T. Selection and breeding programs in aquaculture. (pp. 173-194). Ed. Springer.

Hernandez-Castro, L.E., Paterno, M., Villacís, A.G., Andersson B., Costales, J.A., De Noia, M., Ocaña-Mayorga, S., Yumiseva, C.A., Grijalva, M.J. & Llewellyn. M.S. (2017). 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador. PLOS Neglected Tropical Diseases, 11(7), e0005710. https://doi.org/10.1371/journal.pntd.0005710

Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Lapègue, S., Harrang, E., Heurtebise, S., Flahauw, E., Donnadieu, C., Gayral, P., Ballenghien, M., Genestout, L., Barbotte, L., Mahla, R., Haffray, P., & Klopp, C. (2014). Development of SNP genotyping arrays in two shellfish species. Molecular Ecology Resources, 14(4), 820–830. https://doi.org/10.1111/1755-0998.12230

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Lischer, H. E. L., & Excoffier L. (2012). PGDSpider: An automated data conversion tools for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298–299. https://doi.org/10.1093/bioinformatics/btr642

Lyu, D., Yu, Y., Wang, Q., Luo, Z., Zhang, Q., Zhang, X., Xiang, J., & Li, F. (2021). Identification of growth-associated genes by Genome-Wide Association Study and their potential application in the breeding of Pacific white shrimp (Litopenaeus vannamei). Frontiers in Genetics, 12, 611570. https://doi.org/10.3389/fgene.2021.611570

Maqsood, H.M. & Ahmad, S.M. (2017). Advances in Molecular Markers and Their Applications in Aquaculture and Fisheries. Genetics of Aquatic Organisms, 1, 27–41. https://doi.org/10.4194/2459-1831-v1_1_05

Martínez Matus, E. (2016). Diversidad genética y éxito reproductivo del Jurel de Castilla Seriola lalandi (Valenciennes, 1833) en cautiverio. [Tesis de Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada]. http://cicese.repositorioinstitucional.mx/jspui/handle/1007/674

Matz, M. V., Treml, E. A., Aglyamova, G. V,. & Bay L. K. (2018). Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genetics, 14(4), e1007220. https://doi.org/10.1371/journal.pgen.1007220

Peakall, R., & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Peng, M., Zeng, D., Zhu, W., Chen, X., Yang, C., Liu, Q., Li, Q., Wang, H., Liu, H., Liang, J., Lin, Y., Chen, X., & Zhao, Y. (2020). Construction of a high-density genetic map and identification of quantitative trait loci for nitrite tolerance in the pacific white shrimp (Litopenaeus vannamei). Frontiers in Genetics, 11, 571880. https://doi.org/10.3389/fgene.2020.571880

Peñaloza, C., Gutierrez, A. P., Eöry, L., Wang, S., Guo, X., Archibald, A. L., Bean, T. P., & Houston, R. D. (2021). A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience, 10(3), giab020. https://doi.org/10.1093/gigascience/giab020

Perez-Enriquez, R., & Max-Aguilar A. (2016). Pedigree traceability in whiteleg shrimp (Litopenaeus vannamei) using genetic markers: A comparison between microsatellites and SNPs. Ciencias Marinas, 42(4), 227–235. https://doi.org/10.7773/cm.v42i4.2662

Perez-Enriquez, R., Magallón-Barajas, F.J., & Llera-Herrera, R. (2024). Bases to inform a genetic line of whiteleg shrimp Penaeus vannamei of Mexican origin. Latin American Journal of Aquatic Research, 52(1)., 150-162. https://doi.org/10.3856/vol52-issue1-fulltext-3066

Perez-Enriquez, R., Robledo, D., Houston, R. D., & Llera-Herrera, R. (2018). SNP markers for the genetic characterization of Mexican shrimp broodstocks. Genomics, 110(6), 423–429. https://doi.org/10.1016/j.ygeno.2018.10.001

Perez-Enriquez, R., Takagi, M., & Taniguchi, N. (1999). Genetic variability and pedigree tracing of a hatchery reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture, 173(1-4), 411–421. https://doi.org/10.1016/S0044-8486(98)00469-4

Perez-Enriquez, R., Valadez-Rodríguez, J. A., Max-Aguilar, A., Dumas, S., & Diaz-Viloria, N. (2020). Parental contribution in a cultivated stock for the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) estimated by newly developed microsatellite markers. Latin American Journal of Aquatic Research, 48(2), 247–256. https://doi.org/10.3856/vol48-issue2-fulltext-2424

Reguera-Rouzaud, N., Díaz-Viloria, N., Pérez-Enríquez, R., Espino-Barr, E., Rivera-Lucero, M. I., & Munguía-Vega, A. (2021). Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical Eastern Pacific. Journal of Fish Biology, 98(5), 1267–1280. https://doi.org/10.1111/jfb.14656

Ríos, N., Casanova, A., Hermida, M., Pardo, B. G., Martínez, P., Bouza, C., & García, G. (2020). Population genomics in Rhamdia quelen (Heptapteridae, Siluriformes) reveals deep divergence and adaptation in the neotropical region. Genes, 11(1), 109. https://doi.org/10.3390/genes11010109

Rivera-Lucero, M. I. (2020). Análisis comparativo de la composición genética en el pacífico panameño de poblaciones de Lutjanus peru, L. guttatus y L. argentiventris. [Tesis de Licenciatura en Biología Marina. Universidad Marítima Internacional de Panamá].

Robledo, D., Palaiokostas, C., Bargelloni, L., Martínez, P., & Houston R. (2018). Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture, 10(3), 670–682. https://doi.org/10.1111/raq.12193.

Seetharam, A. S. (2018). Genome assembly and annotation for Almaco Jack (Seriola rivoliana). Abstracts on line. Plant and Animal Genome XXVI. P0271. https://plan.core-apps.com/pag_2018/abstract/ea4431cd14b6570e9d2f2a543c1d4d0a

Valenzuela-Quiñonez, F., De-Anda-Montañez, J. A., Gilbert-Horvath, E., Garza, J. C., & García-De León F. J. (2016). Panmixia in an endangered species: the totoaba (Totoaba macdonaldi) in the Gulf of California. Journal of Heredity, 107(6), 469–503. https://doi.org/10.1093/jhered/esw046

Vandeputte, M., & Haffray, P. (2014). Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Frontiers in Genetics, 5, 432. https://doi.org/10.3389/fgene.2014.00432

Wang, S., Meyer, E., McKay, J. K., & Matz, M. V. (2012). 2b-RAD: A simple and flexible method for genome-wide genotyping. Nature Methods, 9(8), 808–810. https://doi.org/10.1038/nmeth.2023

Zhang, X., Yuan, J., Sun, Y., Li, S., Gao, Y., Yu, Y., Liu, C., Wang, Q., Lv, X., Zhang, X., Ma, K.Y., Wang, X., Lin, W., Wang, L., Zhu, X., Zhang, C., Zhang, J., Jin, S., Yu, K., … Xiang, J. (2019). Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications, 10(1), 356. https://doi.org/10.1038/s41467-018-08197-4

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional