Genetic characterization of aquaculture species by low-density SNP panels
SPA_pdf (Español (España))
ENG_pdf

Keywords

genetic diversity
Molecular markers
Parentage analysis
Genetic selection

Métricas de PLUMX 

Abstract

The aquaculture industry has a high growth with a projection of reaching 106 million tons in 2030 worldwide. For this, the implementation of genetic management and selection programs, based on the monitoring of the genetic diversity, inbreeding and pedigree of the cultivated stocks, are needed. In this study, a genetic analysis platform, known as 2bRAD, was developed to genetically characterize aquaculture species by means of low-density SNP (Single Nucleotide Polimorphisms) panels of 100-500 genetic markers. The 2bRAD technique, implemented with the enzyme BcgI and using four selective bases in the adaptors, resulted in low-density panels of 114 and 159 SNPs for the Pacific oyster Crassostrea gigas and almaco jack Seriola rivoliana, respectively. These panels were validated with parentage and paternity assignment tests, and thus, they are suitable to study genetic diversity and pedigree follow-up in cultivated stocks. The panel obtained in the whiteleg shrimp Penaeus (Litopenaeus) vannamei was of medium-density (2874 SNPs), and thus, has other type of applications. The developed 2bRAD platform is potentially applicable to other marine fish species such as red snapper, rose spotted snapper and totoaba.

https://doi.org/10.15741/revbio.11.e1534
SPA_pdf (Español (España))
ENG_pdf

References

Amparo Venegas, A. O. (2019). Aplicación de la tecnología de biofloc (BFT) al cultivo de Totoaba macdonaldi. [Tesis de Maestría en Ciencias, Centro de Investigación Científica y de Educación Superior de Ensenada]. http://cicese.repositorioinstitucional.mx/jspui/handle/1007/2762

Barbanti, A., Torrado, H., Macpherson, E., Bargelloni, L., Franch, R., Carreras, C., & Pascual, M. (2020). Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Molecular Ecology Resources, 20(3), 795–806. https://doi.org/10.1111/1755-0998.13144

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Campbell, N. R., Harmon, S. A., & Narum, S. R. (2015). Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Molecular Ecology Resources, 15(4), 855-867. https://doi.org/10.1111/1755-0998.12357

Catchen, M. J., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, H. J. (2011). Stacks: building and genotyping loci de novo from short-reads sequences. G3: Genes Genomes Genetics, 1(3), 171–182. https://doi.org/10.1534/g3.111.000240

Chambers, E. A., Tarvin, R. D., Santos, J. C., Ron, S. R., Betancourth-Cundar, M., Hillis, D. M., Matz, M. V., & Cannatella, D. C. (2023). 2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics. Ecology and Evolution, 13(3), e9842. https://doi.org/10.1002/ece3.9842

CONAPESCA. (2021). Anuario Estadístico de Acuacultura y Pesca, Edición 2021. Comisión Nacional de Acuacultura y Pesca, México. https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., De Pristo, M. A., Handsaker, R., Lunter, G., Marth, G., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools, Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Durland, E., De Wit, P., & Langdon, C. (2021). Temporally balanced selection during development of larval Pacific oysters (Crassostrea gigas) inherently preserves genetic diversity within offspring. Proceedings of the Royal Society B, 288(1958), 20203223. https://doi.org/10.1098/rspb.2020.3223

Escárcega Rodríguez, S. (2018). Preselección de especies para la piscicultura marina en el Pacífico Sur de México. Ciencia Ergo Sum, 25(1), 1-31. https://www.redalyc.org/journal/104/10453975009/html/

FAO. (2019). The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. Rome. https://www.fao.org/aquatic-genetic-resources/activities/sow/en/

FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en

Gjerde, B. (2010). Design of breeding plans. In Gjedrem, T. Selection and breeding programs in aquaculture. (pp. 173-194). Ed. Springer.

Hernandez-Castro, L.E., Paterno, M., Villacís, A.G., Andersson B., Costales, J.A., De Noia, M., Ocaña-Mayorga, S., Yumiseva, C.A., Grijalva, M.J. & Llewellyn. M.S. (2017). 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador. PLOS Neglected Tropical Diseases, 11(7), e0005710. https://doi.org/10.1371/journal.pntd.0005710

Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Lapègue, S., Harrang, E., Heurtebise, S., Flahauw, E., Donnadieu, C., Gayral, P., Ballenghien, M., Genestout, L., Barbotte, L., Mahla, R., Haffray, P., & Klopp, C. (2014). Development of SNP genotyping arrays in two shellfish species. Molecular Ecology Resources, 14(4), 820–830. https://doi.org/10.1111/1755-0998.12230

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Lischer, H. E. L., & Excoffier L. (2012). PGDSpider: An automated data conversion tools for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298–299. https://doi.org/10.1093/bioinformatics/btr642

Lyu, D., Yu, Y., Wang, Q., Luo, Z., Zhang, Q., Zhang, X., Xiang, J., & Li, F. (2021). Identification of growth-associated genes by Genome-Wide Association Study and their potential application in the breeding of Pacific white shrimp (Litopenaeus vannamei). Frontiers in Genetics, 12, 611570. https://doi.org/10.3389/fgene.2021.611570

Maqsood, H.M. & Ahmad, S.M. (2017). Advances in Molecular Markers and Their Applications in Aquaculture and Fisheries. Genetics of Aquatic Organisms, 1, 27–41. https://doi.org/10.4194/2459-1831-v1_1_05

Martínez Matus, E. (2016). Diversidad genética y éxito reproductivo del Jurel de Castilla Seriola lalandi (Valenciennes, 1833) en cautiverio. [Tesis de Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada]. http://cicese.repositorioinstitucional.mx/jspui/handle/1007/674

Matz, M. V., Treml, E. A., Aglyamova, G. V,. & Bay L. K. (2018). Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genetics, 14(4), e1007220. https://doi.org/10.1371/journal.pgen.1007220

Peakall, R., & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Peng, M., Zeng, D., Zhu, W., Chen, X., Yang, C., Liu, Q., Li, Q., Wang, H., Liu, H., Liang, J., Lin, Y., Chen, X., & Zhao, Y. (2020). Construction of a high-density genetic map and identification of quantitative trait loci for nitrite tolerance in the pacific white shrimp (Litopenaeus vannamei). Frontiers in Genetics, 11, 571880. https://doi.org/10.3389/fgene.2020.571880

Peñaloza, C., Gutierrez, A. P., Eöry, L., Wang, S., Guo, X., Archibald, A. L., Bean, T. P., & Houston, R. D. (2021). A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience, 10(3), giab020. https://doi.org/10.1093/gigascience/giab020

Perez-Enriquez, R., & Max-Aguilar A. (2016). Pedigree traceability in whiteleg shrimp (Litopenaeus vannamei) using genetic markers: A comparison between microsatellites and SNPs. Ciencias Marinas, 42(4), 227–235. https://doi.org/10.7773/cm.v42i4.2662

Perez-Enriquez, R., Magallón-Barajas, F.J., & Llera-Herrera, R. (2024). Bases to inform a genetic line of whiteleg shrimp Penaeus vannamei of Mexican origin. Latin American Journal of Aquatic Research, 52(1)., 150-162. https://doi.org/10.3856/vol52-issue1-fulltext-3066

Perez-Enriquez, R., Robledo, D., Houston, R. D., & Llera-Herrera, R. (2018). SNP markers for the genetic characterization of Mexican shrimp broodstocks. Genomics, 110(6), 423–429. https://doi.org/10.1016/j.ygeno.2018.10.001

Perez-Enriquez, R., Takagi, M., & Taniguchi, N. (1999). Genetic variability and pedigree tracing of a hatchery reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture, 173(1-4), 411–421. https://doi.org/10.1016/S0044-8486(98)00469-4

Perez-Enriquez, R., Valadez-Rodríguez, J. A., Max-Aguilar, A., Dumas, S., & Diaz-Viloria, N. (2020). Parental contribution in a cultivated stock for the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) estimated by newly developed microsatellite markers. Latin American Journal of Aquatic Research, 48(2), 247–256. https://doi.org/10.3856/vol48-issue2-fulltext-2424

Reguera-Rouzaud, N., Díaz-Viloria, N., Pérez-Enríquez, R., Espino-Barr, E., Rivera-Lucero, M. I., & Munguía-Vega, A. (2021). Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical Eastern Pacific. Journal of Fish Biology, 98(5), 1267–1280. https://doi.org/10.1111/jfb.14656

Ríos, N., Casanova, A., Hermida, M., Pardo, B. G., Martínez, P., Bouza, C., & García, G. (2020). Population genomics in Rhamdia quelen (Heptapteridae, Siluriformes) reveals deep divergence and adaptation in the neotropical region. Genes, 11(1), 109. https://doi.org/10.3390/genes11010109

Rivera-Lucero, M. I. (2020). Análisis comparativo de la composición genética en el pacífico panameño de poblaciones de Lutjanus peru, L. guttatus y L. argentiventris. [Tesis de Licenciatura en Biología Marina. Universidad Marítima Internacional de Panamá].

Robledo, D., Palaiokostas, C., Bargelloni, L., Martínez, P., & Houston R. (2018). Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture, 10(3), 670–682. https://doi.org/10.1111/raq.12193.

Seetharam, A. S. (2018). Genome assembly and annotation for Almaco Jack (Seriola rivoliana). Abstracts on line. Plant and Animal Genome XXVI. P0271. https://plan.core-apps.com/pag_2018/abstract/ea4431cd14b6570e9d2f2a543c1d4d0a

Valenzuela-Quiñonez, F., De-Anda-Montañez, J. A., Gilbert-Horvath, E., Garza, J. C., & García-De León F. J. (2016). Panmixia in an endangered species: the totoaba (Totoaba macdonaldi) in the Gulf of California. Journal of Heredity, 107(6), 469–503. https://doi.org/10.1093/jhered/esw046

Vandeputte, M., & Haffray, P. (2014). Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Frontiers in Genetics, 5, 432. https://doi.org/10.3389/fgene.2014.00432

Wang, S., Meyer, E., McKay, J. K., & Matz, M. V. (2012). 2b-RAD: A simple and flexible method for genome-wide genotyping. Nature Methods, 9(8), 808–810. https://doi.org/10.1038/nmeth.2023

Zhang, X., Yuan, J., Sun, Y., Li, S., Gao, Y., Yu, Y., Liu, C., Wang, Q., Lv, X., Zhang, X., Ma, K.Y., Wang, X., Lin, W., Wang, L., Zhu, X., Zhang, C., Zhang, J., Jin, S., Yu, K., … Xiang, J. (2019). Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications, 10(1), 356. https://doi.org/10.1038/s41467-018-08197-4

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.