EN PRENSA. Aislamiento e identificación de bacterias asociadas a líquenes presentes en el estado de Guanajuato. EN PRENSA
pdf

Palabras clave

Asociación liquen-bacteria
Aislamiento bacteriano
Gen 16S rDNA
Guanajuato

Métricas de PLUMX 

Resumen

Los líquenes son asociaciones complejas constituidas principalmente por un micobionte y un fotobionte, diversos estudios han demostrado la presencia de bacterias asociadas a esta simbiosis, sin embargo, en Guanajuato la investigación a este nivel es escasa. El objetivo de este estudio fue aislar e identificar bacterias asociadas a líquenes del estado de Guanajuato. Se realizó un muestreo aleatorio de 21 líquenes en el área recreativa “Las palomas”, las muestras fueron identificadas morfológica y químicamente, las bacterias fueron aisladas e identificadas en diferentes medios de cultivo sólidos. Los aislamientos obtenidos se identificaron mediante tinción Gram y secuenciación del gen 16S ADNr. Se registraron un total de 11 líquenes foliosos, 5 fruticosos y 5 costrosos, de los cuales destacan los géneros Punctelia, Parmelia y Dendrographa. De las 23 cepas bacterianas aisladas el filo Proteobacteria fue el más abundante (52.2%), seguido del de Firmicutes (39.1%) y Actinobacteria (8.7%), provenientes principalmente de líquenes foliosos y fruticosos. Se identificaron géneros como Mesorhizobium sp., Paenibacillus sp., Bacillus sp., Acinetobacter sp. y Stutzerimonas sp. La descripción de bacterias asociadas a líquenes contribuye al conocimiento de la diversidad microbiana, determinar las probables funciones que desempeñan dentro de los líquenes queda por ser establecido.

https://doi.org/10.15741/revbio.11.e1626
pdf

Citas

Antolín, D. P., Delgado, H. E., Díaz, C. J., Fernández, R. L., Gómez, C. L., Gómez, I. M., Sánchez, S. L., Sanchón, B.A., Martina, M. D. S., & Garrido, H. M. V. (2021). Estudio de contaminación en Salamanca utilizando líquenes como bioindicadores. Revista de Investigación Científica para Alumnos de Enseñanza Secundaria. Meridies, 24,53-58. https://www.meridies.info/assets/meridies-24.pdf

Aschenbrenner, I. A., Cernava T., Berg G., & Grube, M. (2016). Understanding Microbial Multi-Species Symbioses. Frontiers in Microbiology, 7,180. https://doi.org/10.3389/fmicb.2016.00180

Biosca, E. G., Flores, R., Santander, R. D., Díez-Gil, J. L., & Barreno E. (2016). Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria. PLoS One. 1–22. https://doi.org/10.1371/journal.pone.0160328

Brodo, I. M. (2016). Keys to Lichens of North America: Revised and Expanded. Yale University Press.

Büdel, B., & Scheidegger, C. (2008). Thallus morphology and anatomy. In T. H. III. Nash. Lichen Biology, (pp. 40-68). Ed. Cambridge University Press.

Cappitelli, F., & Sorlini, C. (2008). Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage. Applied And Environmental Microbiology, 74(3), 564-569. https://doi.org/10.1128/aem.01768-07

Cardinale, M., Puglia, A. M. & Grube, M. (2006). Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology, 57(3), 484-495. https://doi:10.1111/j.1574-6941.2006.00133.x

Cardinale, M., Steinová, J., Rabensteiner, J., Berg, G., & Grube, M. (2011). Age, sun and substrate: triggers of bacterial communities in lichens. Environmental Microbiology Reports, 4(1), 23-28. https://doi.org/10.1111/j.1758-2229.2011.00272.x

Cernava, T., Erlacher, A., Aschenbrenner, I., Krug, L., Lassek, C., Riedel, K., Grube, M. & Berg, G. (2017). Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 5(82), https://doi.org/10.1186/s40168-017-0303-5

Chase, A. B., Arévalo, P., Polz, M. F., Berlemont, R. & Martiny, J. B. H. (2016). Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium. Frontiers in Microbiology, 7, Article 1849. https://doi.org/10.3389/fmicb.2016.01874

Curtis, P. D., & Brun, Y. V. (2010). Getting in the Loop: Regulation of Development in Caulobacter crescentus. Microbiology and Molecular Biology Reviews, 74(1), 13-41. https://doi.org/10.1128/mmbr.00040-09

Gilbert, O. L. (1990). The Lichen Flora of Urban Wasteland. The Lichenologist, 22(1), 87-101. https://doi.org/10.1017/s0024282990000056

Google. (2022). Google Earth. https://www.gooogle.com/earth/

Grube, M., Cardinale, M., de Castro, J. V. Jr., Müller, H. & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal, 3, 1105-1115. https://doi.org/10.1038/ismej.2009.63

Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W. & Berg, G. (2015). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9, 412-424. https://doi.org/10.1038/ismej.2014.138

Grube, M. & Berg, G. (2009). Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biology Reviews, 23(3), 72-85. https://doi.org/10.1016/j.fbr.2009.10.001

Hall, T. A. (1999). BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

Helene, L. C. F., Dall'Agnol, R. F., Delamuta, J. R. M. & Hungaria, M. (2019). Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. International Journal of Systematic and Evolutionary Microbiology, 69(6), 1800-1806. https://doi:10.1099/ijsem.0.003397

Herrera-Campos, M. de los Á., Lücking, R., Pérez-Pérez, R. E., Miranda-González, R., Sánchez, N., Barcenas-Peña, A., Carrizosa, A., Zambrano, A., Ryan, B. D. & Nash, T. H. III. (2014). Lichen biodiversity in Mexico. Revista Mexicana de Biodiversidad, 85, 82-99. https://doi.org/10.7550/rmb.37003

Hodkinson, B. P., & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49, 163-180. https://doi.org/10.1007/s13199-009-0049-3

Huang, H. D., Wang, W., Ma, T., Li, G. Q., Liang, F. L. & Liu, R. L. (2009). Sphingomonas sanxanigenens sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 59(4), 719-723. https://doi.org/10.1099/ijs.0.000257-0

Huang, H. Y., Li, J., Zhao, G. Z., Zhu, W. Y., Yang, L. L., Tang, H. Y., Xu, L. H., & Li, W. J. (2012). Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_7), 1576-1580. https://doi.org/10.1099/ijs.0.031484-0

Illana-Esteban, C. (2012). Líquenes usados en Medicina Tradicional. Boletín de la Sociedad Micológica de Madrid, 36, 163-174.

Jones, D., & Keddie, R. M. (2006). The Genus Arthrobacter. In Dworkin M., Falkow S., Rosenberg E., Schleifer K. H. & Stackebrandt E. The Prokaryotes. (pp. 945-960). Ed. Springer eBooks. https://doi.org/10.1007/0-387-30743-5_36

Kim, B., Han, S. R., Lamichhane, J., Park, H. & Oh, T. J. (2019). Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen. Journal of Microbiology and Biotechnology, 29(7), 1144–1154. https://doi.org/10.4014/jmb.1906.06037

Kuroda, M., Sei, K., Yamashita, M. & Ike, M. (2022). Draft Genome Sequence of Stutzerimonas stutzeri NT-I, Which Reduces Selenium Oxyanions into Elemental Selenium and Volatile Selenium Species. Microbiology Resource Announcements, 11(12), Article 101016-22. https://doi.org/10.1128/mra.01016-22

Lalucat, J., Gomila, M., Mulet, M., Zaruma, A., & García-Valdés, E. (2022). Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Systematic and Applied Microbiology, 45(1), Article 126289. https://doi.org/10.1016/j.syapm.2021.126289

Liba, C. J., Ferrara, F., Manfio, G. P., Fantinatti-Garboggini, F., Albuquerque, R., Pavan, C., Ramos, P., Moreira-Filho, C. A. & Barbosa, H. R. (2006). Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of Applied Microbiology, 101(5), 1076-1086. https://doi.org/10.1111/j.1365-2672.2006.03010.x

Liu, C., Jiang, Y., Wang, X., Chen, D., Chen, X., Wang, L., Han L., Huang, X. & Jiang, C. (2017). Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis. Microbial Ecology, 74(3), 570-584. https://doi.org/10.1007/s00248-017-0972-4

Martínez-Vargas, B. I. & Pérez-y-Terrón, R. (2020). Diversity of non-photosynthetic bacteria and their metabolic processes associated with lichens. Alliances and Trends BUAP, 5(20), 155-171. https://hdl.handle.net/20.500.12371/9785

Mikhaylov, A. (2020). Lichens as indicators of atmospheric pollution in urban ecosystems. Israel Journal of Ecology and Evolution, 67(1-2), 60-68. https://doi.org/10.1163/22244662-bja10016

Nash, T. H. III. (2008). Lichen Biology. Cambridge University Press

Navarro-Noya, Y. E., Jiménez-Aguilar, A., Valenzuela-Encinas, C., Alcántara-Hernández, R. J., Ruíz-Valdiviezo, V. M., Ponce-Mendoza, A., Luna-Guido, M., Marsch, R. & Dendooven, L. (2013). Bacterial Communities in Soil Under Moss and Lichen-Moss Crusts. Geomicrobiology Journal, 31(2), 152-160. https://doi.org/10.1080/01490451.2013.820236

Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology And Biotechnology, 73(4), 723-734. https://doi.org/10.1007/s00253-006-0611-3

Pankratov, T. A. (2018). Bacterial complexes of Khibiny Mountains lichens revealed in Cladonia uncialis, C. portentosa, Alectoria ochroleuca and Nephroma arcticum. Microbiology, 87, 79-88. https://doi.org/10.1134/S0026261718010149

Poindexter, J. S. (1962). Biological properties and classification of the Caulobacter group. Bacteriological Reviews, 28(3), 231-295. https://doi.org/10.1128/br.28.3.231-295.1964

Rosenwinkel, S., Korup, O., Landgraf, A., & Dzhumabaeva, A. (2015). Limits to lichenometry. Quaternary Science Reviews, 129, 229-238. https://doi.org/10.1016/j.quascirev.2015.10.031

Sanders, W. B. (2001). Lichens: The Interface between Mycology and Plant Morphology: Whereas most other fungi live as an absorptive mycelium inside their food substrate, the lichen fungi construct a plant-like body within which photosynthetic algal symbionts are cultivated. BioScience, 51(12), 1025-1035. https://doi.org/10.1641/0006-3568(2001)051[1025:LTIBMA]2.0.CO;2

Selbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M., & Onofri, S. (2010). Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology, 33(1), 71-83, https://doi.org/10.1007/s00300-009-0686-2

Shishido, T. K., Wahlsten, M., Laine, P., Rikkinen, J., Lundell, T., & Auvinen, P. (2021). Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products. Microorganisms, 9(7), 1347. https://doi.org/10.3390/microorganisms9071347

Sierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., Mason, C. E. & Zambrano, M. M. (2020). The Microbiomes of Seven Lichen Genera Reveal Host Specificity, a Reduced Core Community and Potential as Source of Antimicrobials. Frontiers in Microbiology, 11, Article 398. https://doi.org/10.3389/fmicb.2020.00398

Swamy, C. T., & Gayathri, D. (2021). High throughput sequencing study of foliose lichenassociated bacterial communities from India. Molecular Biology Reports, 48, 2389–2397. https://doi.org/10.1007/s11033-021-06272-6

Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9(4), 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027 https://doi.org/10.1093/molbev/msab120

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Zhang, J., Peng, S., Shang, Y., Brunel, B., Li, S., Zhao, Y., Liu, Y., Chen, W., Wang, E., Sing, R. P., & James, E. K. (2020). Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Systematic and Applied Microbiology, 43(4), Article 126089. https://doi.org/10.1016/j.syapm.2020.126089

Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000). A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology. 7(1-2), 203-214, https://doi.org/10.1089/10665270050081478

Zhao, Y., Wang, M., & Xu, B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal Of Functional Foods, 80, 104283. https://doi.org/10.1016/j.jff.2020.104283

Zuñiga-González, R. A., Álvarez-Barajas, I. L., Corral-Avitia, A. Y., Flores-Margez, J. P., Enríquez-Anchondo, I. D., & Quiñónez-Martínez, M. (2021). Diversity, ecology and potential use of epiphytic lichens from Chihuahua. Science on the Frontier: UACJ Journal of Science and Technology, 16(2), 19-32. http://cathi.uacj.mx/bitstream/handle/20.500.11961/21370/Articulo%202021%20Liquenes%20epifitos%20de%20chihuahua%20ciencia%20en%20la%20frontera.pdf?sequence=1&isAllowed=y

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional