Abstract
Lichens are complex associations constituted mainly by a mycobiont and a photobiont, various studies have shown the presence of bacteria associated to this symbiosis, however, in Guanajuato the research at this level is scarce. The objective of this study was to isolate and identify bacteria associated to lichens from the state of Guanajuato. A random sampling of 21 lichens was carried out in the recreational area "Las palomas", the samples were identified morphologically and chemically, the bacteria were isolated and identified in different solid culture media. The isolates obtained were identified by Gram staining and 16S rDNA gene sequencing. A total of 11 foliose, 5 fruticose and 5 crustose lichens were registered, of which the genera Punctelia, Parmelia and Dendrographa were distinctive. Of the 23 bacterial strains isolated, the phylum Proteobacteria was the most abundant (52.2%), followed by Firmicutes (39.1%) and Actinobacteria (8.7%), mainly from foliose and fruticose lichens. Genera such as Mesorhizobium sp., Paenibacillus sp., Bacillus sp., Acinetobacter sp. and Stutzerimonas sp. were identified. The description of bacteria associated to lichens contributes to the knowledge of the microbial diversity, it remains to recognize the probable functions that they perform within lichens.
References
Antolín, D. P., Delgado, H. E., Díaz, C. J., Fernández, R. L., Gómez, C. L., Gómez, I. M., Sánchez, S. L., Sanchón, B.A., Martina, M. D. S., & Garrido, H. M. V. (2021). Estudio de contaminación en Salamanca utilizando líquenes como bioindicadores. Revista de Investigación Científica para Alumnos de Enseñanza Secundaria. Meridies, 24,53-58. https://www.meridies.info/assets/meridies-24.pdf
Aschenbrenner, I. A., Cernava T., Berg G., & Grube, M. (2016). Understanding Microbial Multi-Species Symbioses. Frontiers in Microbiology, 7,180. https://doi.org/10.3389/fmicb.2016.00180
Biosca, E. G., Flores, R., Santander, R. D., Díez-Gil, J. L., & Barreno E. (2016). Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria. PLoS One. 1–22. https://doi.org/10.1371/journal.pone.0160328
Brodo, I. M. (2016). Keys to Lichens of North America: Revised and Expanded. Yale University Press.
Büdel, B., & Scheidegger, C. (2008). Thallus morphology and anatomy. In T. H. III. Nash. Lichen Biology, (pp. 40-68). Ed. Cambridge University Press.
Cappitelli, F., & Sorlini, C. (2008). Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage. Applied And Environmental Microbiology, 74(3), 564-569. https://doi.org/10.1128/aem.01768-07
Cardinale, M., Puglia, A. M. & Grube, M. (2006). Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology, 57(3), 484-495. https://doi:10.1111/j.1574-6941.2006.00133.x
Cardinale, M., Steinová, J., Rabensteiner, J., Berg, G., & Grube, M. (2011). Age, sun and substrate: triggers of bacterial communities in lichens. Environmental Microbiology Reports, 4(1), 23-28. https://doi.org/10.1111/j.1758-2229.2011.00272.x
Cernava, T., Erlacher, A., Aschenbrenner, I., Krug, L., Lassek, C., Riedel, K., Grube, M. & Berg, G. (2017). Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 5(82), https://doi.org/10.1186/s40168-017-0303-5
Chase, A. B., Arévalo, P., Polz, M. F., Berlemont, R. & Martiny, J. B. H. (2016). Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium. Frontiers in Microbiology, 7, Article 1849. https://doi.org/10.3389/fmicb.2016.01874
Curtis, P. D., & Brun, Y. V. (2010). Getting in the Loop: Regulation of Development in Caulobacter crescentus. Microbiology and Molecular Biology Reviews, 74(1), 13-41. https://doi.org/10.1128/mmbr.00040-09
Gilbert, O. L. (1990). The Lichen Flora of Urban Wasteland. The Lichenologist, 22(1), 87-101. https://doi.org/10.1017/s0024282990000056
Google. (2022). Google Earth. https://www.gooogle.com/earth/
Grube, M., Cardinale, M., de Castro, J. V. Jr., Müller, H. & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal, 3, 1105-1115. https://doi.org/10.1038/ismej.2009.63
Grube, M., Cernava, T., Soh, J., Fuchs, S., Aschenbrenner, I., Lassek, C., Wegner, U., Becher, D., Riedel, K., Sensen, C. W. & Berg, G. (2015). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. The ISME Journal, 9, 412-424. https://doi.org/10.1038/ismej.2014.138
Grube, M. & Berg, G. (2009). Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biology Reviews, 23(3), 72-85. https://doi.org/10.1016/j.fbr.2009.10.001
Hall, T. A. (1999). BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Helene, L. C. F., Dall'Agnol, R. F., Delamuta, J. R. M. & Hungaria, M. (2019). Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. International Journal of Systematic and Evolutionary Microbiology, 69(6), 1800-1806. https://doi:10.1099/ijsem.0.003397
Herrera-Campos, M. de los Á., Lücking, R., Pérez-Pérez, R. E., Miranda-González, R., Sánchez, N., Barcenas-Peña, A., Carrizosa, A., Zambrano, A., Ryan, B. D. & Nash, T. H. III. (2014). Lichen biodiversity in Mexico. Revista Mexicana de Biodiversidad, 85, 82-99. https://doi.org/10.7550/rmb.37003
Hodkinson, B. P., & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49, 163-180. https://doi.org/10.1007/s13199-009-0049-3
Huang, H. D., Wang, W., Ma, T., Li, G. Q., Liang, F. L. & Liu, R. L. (2009). Sphingomonas sanxanigenens sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 59(4), 719-723. https://doi.org/10.1099/ijs.0.000257-0
Huang, H. Y., Li, J., Zhao, G. Z., Zhu, W. Y., Yang, L. L., Tang, H. Y., Xu, L. H., & Li, W. J. (2012). Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_7), 1576-1580. https://doi.org/10.1099/ijs.0.031484-0
Illana-Esteban, C. (2012). Líquenes usados en Medicina Tradicional. Boletín de la Sociedad Micológica de Madrid, 36, 163-174.
Jones, D., & Keddie, R. M. (2006). The Genus Arthrobacter. In Dworkin M., Falkow S., Rosenberg E., Schleifer K. H. & Stackebrandt E. The Prokaryotes. (pp. 945-960). Ed. Springer eBooks. https://doi.org/10.1007/0-387-30743-5_36
Kim, B., Han, S. R., Lamichhane, J., Park, H. & Oh, T. J. (2019). Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen. Journal of Microbiology and Biotechnology, 29(7), 1144–1154. https://doi.org/10.4014/jmb.1906.06037
Kuroda, M., Sei, K., Yamashita, M. & Ike, M. (2022). Draft Genome Sequence of Stutzerimonas stutzeri NT-I, Which Reduces Selenium Oxyanions into Elemental Selenium and Volatile Selenium Species. Microbiology Resource Announcements, 11(12), Article 101016-22. https://doi.org/10.1128/mra.01016-22
Lalucat, J., Gomila, M., Mulet, M., Zaruma, A., & García-Valdés, E. (2022). Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Systematic and Applied Microbiology, 45(1), Article 126289. https://doi.org/10.1016/j.syapm.2021.126289
Liba, C. J., Ferrara, F., Manfio, G. P., Fantinatti-Garboggini, F., Albuquerque, R., Pavan, C., Ramos, P., Moreira-Filho, C. A. & Barbosa, H. R. (2006). Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of Applied Microbiology, 101(5), 1076-1086. https://doi.org/10.1111/j.1365-2672.2006.03010.x
Liu, C., Jiang, Y., Wang, X., Chen, D., Chen, X., Wang, L., Han L., Huang, X. & Jiang, C. (2017). Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis. Microbial Ecology, 74(3), 570-584. https://doi.org/10.1007/s00248-017-0972-4
Martínez-Vargas, B. I. & Pérez-y-Terrón, R. (2020). Diversity of non-photosynthetic bacteria and their metabolic processes associated with lichens. Alliances and Trends BUAP, 5(20), 155-171. https://hdl.handle.net/20.500.12371/9785
Mikhaylov, A. (2020). Lichens as indicators of atmospheric pollution in urban ecosystems. Israel Journal of Ecology and Evolution, 67(1-2), 60-68. https://doi.org/10.1163/22244662-bja10016
Nash, T. H. III. (2008). Lichen Biology. Cambridge University Press
Navarro-Noya, Y. E., Jiménez-Aguilar, A., Valenzuela-Encinas, C., Alcántara-Hernández, R. J., Ruíz-Valdiviezo, V. M., Ponce-Mendoza, A., Luna-Guido, M., Marsch, R. & Dendooven, L. (2013). Bacterial Communities in Soil Under Moss and Lichen-Moss Crusts. Geomicrobiology Journal, 31(2), 152-160. https://doi.org/10.1080/01490451.2013.820236
Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology And Biotechnology, 73(4), 723-734. https://doi.org/10.1007/s00253-006-0611-3
Pankratov, T. A. (2018). Bacterial complexes of Khibiny Mountains lichens revealed in Cladonia uncialis, C. portentosa, Alectoria ochroleuca and Nephroma arcticum. Microbiology, 87, 79-88. https://doi.org/10.1134/S0026261718010149
Poindexter, J. S. (1962). Biological properties and classification of the Caulobacter group. Bacteriological Reviews, 28(3), 231-295. https://doi.org/10.1128/br.28.3.231-295.1964
Rosenwinkel, S., Korup, O., Landgraf, A., & Dzhumabaeva, A. (2015). Limits to lichenometry. Quaternary Science Reviews, 129, 229-238. https://doi.org/10.1016/j.quascirev.2015.10.031
Sanders, W. B. (2001). Lichens: The Interface between Mycology and Plant Morphology: Whereas most other fungi live as an absorptive mycelium inside their food substrate, the lichen fungi construct a plant-like body within which photosynthetic algal symbionts are cultivated. BioScience, 51(12), 1025-1035. https://doi.org/10.1641/0006-3568(2001)051[1025:LTIBMA]2.0.CO;2
Selbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M., & Onofri, S. (2010). Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology, 33(1), 71-83, https://doi.org/10.1007/s00300-009-0686-2
Shishido, T. K., Wahlsten, M., Laine, P., Rikkinen, J., Lundell, T., & Auvinen, P. (2021). Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products. Microorganisms, 9(7), 1347. https://doi.org/10.3390/microorganisms9071347
Sierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., Mason, C. E. & Zambrano, M. M. (2020). The Microbiomes of Seven Lichen Genera Reveal Host Specificity, a Reduced Core Community and Potential as Source of Antimicrobials. Frontiers in Microbiology, 11, Article 398. https://doi.org/10.3389/fmicb.2020.00398
Swamy, C. T., & Gayathri, D. (2021). High throughput sequencing study of foliose lichenassociated bacterial communities from India. Molecular Biology Reports, 48, 2389–2397. https://doi.org/10.1007/s11033-021-06272-6
Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9(4), 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027 https://doi.org/10.1093/molbev/msab120
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673
Zhang, J., Peng, S., Shang, Y., Brunel, B., Li, S., Zhao, Y., Liu, Y., Chen, W., Wang, E., Sing, R. P., & James, E. K. (2020). Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Systematic and Applied Microbiology, 43(4), Article 126089. https://doi.org/10.1016/j.syapm.2020.126089
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000). A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology. 7(1-2), 203-214, https://doi.org/10.1089/10665270050081478
Zhao, Y., Wang, M., & Xu, B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal Of Functional Foods, 80, 104283. https://doi.org/10.1016/j.jff.2020.104283
Zuñiga-González, R. A., Álvarez-Barajas, I. L., Corral-Avitia, A. Y., Flores-Margez, J. P., Enríquez-Anchondo, I. D., & Quiñónez-Martínez, M. (2021). Diversity, ecology and potential use of epiphytic lichens from Chihuahua. Science on the Frontier: UACJ Journal of Science and Technology, 16(2), 19-32. http://cathi.uacj.mx/bitstream/handle/20.500.11961/21370/Articulo%202021%20Liquenes%20epifitos%20de%20chihuahua%20ciencia%20en%20la%20frontera.pdf?sequence=1&isAllowed=y
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.