EN PRENSA "Evaluación del potencial de la masa madre a base de harina de chícharo para la elaboración de un producto de panificación tipo hogaza" EN PRENSA
PDF

Palabras clave

pisum sativum
masa madre
Fermentación
Cinetica de crecimiento

Métricas de PLUMX 

Resumen

Este estudio investiga la viabilidad y los beneficios de la harina de chícharo en la fermentación de masa madre, destacando su potencial como alternativa sostenible y nutritiva para la panificación. Se monitoreó la cinética de crecimiento de bacterias ácido lácticas y levaduras, observando un patrón de crecimiento exponencial seguido de estancamiento logístico, lo que señala una exitosa adaptación al medio fermentativo. Los análisis proteicos demostraron que la masa madre de chícharo tiene un contenido proteico superior al de la masa madre de trigo, resaltando su capacidad para enriquecer nutricionalmente los productos de panadería. Los resultados sugieren que la masa madre de chícharo mejora significativamente el valor nutricional del pan, aportando mayor nivel de proteínas. En conclusión, la harina de chícharo ofrece una alternativa viable a la harina de trigo en la elaboración de pan, con implicaciones importantes para la innovación alimentaria. Se recomienda futura investigación para optimizar las condiciones de fermentación y explorar el impacto de diferentes cepas microbianas, abriendo camino para aplicaciones más amplias en alimentos fermentados.

https://doi.org/10.15741/revbio.12.e1664
PDF

Citas

Aguayo-Giménez, E. (2019). Promoción del consumo de fruta de hueso por su riqueza funcional. Agricultural and Food Sciences, Medicine, 68–79.

Banderas, B. M. J. (2012). Análisis proximal de los principales componentes nutricionales de arroz pulido, harina de trigo de flor, maíz amarillo y papa chola. QUITO / PUCE / 2012. https://repositorio.puce.edu.ec/handle/123456789/20939

Chaudhary, A., Marinangeli, C. P. F., Tremorin, D., & Mathys, A. (2018). Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients, 10(4), 490. https://doi.org/10.3390/NU10040490

De Vuyst, L., Comasio, A., & Kerrebroeck, S. Van. (2021). Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. In Critical Reviews in Food Science and Nutrition, 63(15), 2447-2479https://doi.org/10.1080/10408398.2021.1976100

De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 100, 49–160. https://doi.org/10.1016/bs.aambs.2017.02.003

Delcour, J. A. (2010). Structure of Cereals. Principles of Cereal Science and Technology, Third Edition, 1–22. http://dx.doi.org/10.1094/9781891127632.001

Devi, T. S., Prabina, B. J., Gomathy, M., & Kumutha, K. (2020). Isolation and Characterization of Lactic acid bacteria from homemade fermented foods for probiotic applications. International Journal of Current Microbiology and Applied Sciences, 9(2), 1355–1362. https://doi.org/10.20546/IJCMAS.2020.902.158

Gänzle, M. G. (2015). Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/J.COFS.2015.03.001

Garcia, B. E., Rodriguez, E., Salazar, Y., Valle, P. A., Flores-Gallegos, A. C., Rutiaga-Quiñones,M., & Rodriguez-Herrera, R. (2021). Primary Model for Biomass Growth Prediction in Batch Fermentation. Symmetry, 13(8). https://doi.org/10.3390/SYM13081468

González-Montemayor, A.M., Solanilla-Duque, J.F., Flores-Gallegos, A.C., López-Badillo, C.M., Ascacio-Valdés, J.A., & Rodríguez-Herrera, R. (2021). Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread Citation. Foods, 10(9),2227. https://doi.org/10.3390/foods10092227

Kaigorodova, I. M., Ushakov, V. A., Golubkina, N. A., Kotlyar, I. P., Pronina, E. P., & Antoshkina, M. S. (2022). Nutritional value, quality of raw materials and food value of vegetable pea culture (Pisum sativum L.). Vegetable Crops of Russia, 3, 16–32. https://doi.org/10.18619/2072-9146-2022-3-16-32

Kezer, G. (2022). Functional Perspective on Sourdough Bread. Turkish Journal of Agriculture - Food Science and Technology, 10(8), 1410–1414. https://doi.org/10.24925/TURJAF.V10I8.1410-1414.4860

Kitaevskaya, S. V., & Reshetnik, O. A. (2020). Effects of low-temperature treatment on the activity of proteolytic enzymes in various flour types. Proceedings of Universities. Applied Chemistry and Biotechnology, 10(3), 439–449. https://doi.org/10.21285/2227-2925-2020-10-3-439-449

Kozin, A. V., Abramova, L. S., Guseva, E. S., & Derunets, I. V. (2022). Establishment of metrological parameters of the method for measuring the protein mass fraction in fish food products by the Kjeldahl method. Food Systems, 4(4), 239–245. https://doi.org/10.21323/2618-9771-2021-4-4-239-245

Kumari, T., & Deka, S. C. (2021). Potential health benefits of garden pea seeds and pods: A review. Legume Science, 3(2). https://doi.org/10.1002/LEG3.82

Lau, S. W., Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2021). Sourdough Microbiome Comparison and Benefits. Microorganisms, 9(7). https://doi.org/10.3390/MICROORGANISMS9071355

Lemmens, E., De Brier, N., Spiers, K. M., Garrevoet, J., Falkenberg, G., Smolders, E., & Delcour, J. A. (2019). Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. Journal of Cereal Science, 90. https://doi.org/10.1016/J.JCS.2019.102843

Li, J., Shi, A., Liu, H., Hu, H., Wang, Q., Adhikari, B., Jiao, B., & Pignitter, M. (2022). Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods, 11(9). https://doi.org/10.3390/FOODS11091289

Martorana, A., Giuffrè, A. M., Capocasale, M., Zappia, C., & Sidari, R. (2018). Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. European Food Research and Technology, 244(10), 1873–1885. https://doi.org/10.1007/S00217-018-3100-X/METRICS

Montemurro, M., Coda, R., & Rizzello, C. G. (2019). Recent advances in the use of sourdough biotechnology in pasta making. Foods, 8(4). https://doi.org/10.3390/FOODS8040129

Nishinari, K., Kohyama, K., Kumagai, H., Funami, T., & Bourne, M. C. (2013). Parameters of Texture Profile Analysis. Food Science and Technology Research, 19(3), 519–521. https://doi.org/10.3136/FSTR.19.519

Nosworthy, M. G., Tulbek, M. C., & House, J. D. (2017). Does the concentration, isolation, or deflavoring of pea, lentil, and faba bean protein alter protein quality? Cereal Foods World, 62(4), 139–142. https://doi.org/10.1094/CFW-62-4-0139

Pico, J., Bernal, J., & Gómez, M. (2015). Wheat bread aroma compounds in crumb and crust: A review. Food Research International (Ottawa, Ont.), 75, 200–215. https://doi.org/10.1016/J.FOODRES.2015.05.051

Priya, A., Umarani, & Chukwuebuka, E. (2018). In vitro Anticancer Activity of Pisum sativum Seed against Breast Cancer Cell Line (MCF-7). International Journal of Scientific & Engineering Research, 6.

Reale, A., Di Stasio, L., Di Renzo, T., De Caro, S., Ferranti, P., Picariello, G., Addeo, F., & Mamone, G. (2021). Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chemistry, 359. https://doi.org/10.1016/J.FOODCHEM.2021.129955

Sánchez-Aceves, L. M. (2014). Inclusión de proteína de chícharo en el desarrollo de alimentos funcionales de panificación (pan de caja). http://ri.uaemex.mx/handle/20.500.11799/14732

Schober, T. J., O’Brien, C. M., McCarthy, D., Darnedde, A., & Arendt, E. K. (2003). Influence of gluten-free flour mixes and fat powders on the quality of gluten-free biscuits. European Food Research and Technology, 216(5), 369–376. https://doi.org/10.1007/S00217-003-0694-3

Secretaría de Economía. (2017, November 1). Conoce más sobre la industria panificadora en México. https://www.gob.mx/se/articulos/conoce-mas-sobre-la-industria-panificadora-en-mexico. https://www.gob.mx/se/articulos/conoce-mas-sobre-la-industria-panificadora-en-mexico

Song, D. H., Chun, B. H., Lee, S., Reddy, C. K., Jeon, C. O., & Lee, C. H. (2020). Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities. Journal of Microbiology and Biotechnology, 30(11), 1697–1705. https://doi.org/10.4014/JMB.2007.07026

Wu, D. T., Li, W. X., Wan, J. J., Hu, Y. C., Gan, R. Y., & Zou, L. (2023). A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods, 12(13). https://doi.org/10.3390/FOODS12132527

Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.-Y., Zou, L. A., Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.-Y., & Zou, L. (2023). A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods, 12(13), 2527. https://doi.org/10.3390/FOODS12132527

Zhang, Y., Zhou, X., Zhong, J., Tan, L., & Liu, C. (2019). Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocolloids, 93, 325–334. https://doi.org/10.1016/J.FOODHYD.2019.02.032

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional