Abstract
This study investigates the viability and benefits of pea flour in sourdough fermentation, highlighting its potential as a sustainable and nutritious alternative for baking. The growth kinetics of lactic acid bacteria and yeasts were monitored, showing an exponential growth pattern followed by logistic stagnation, indicating successful adaptation to the fermentative medium. Protein analyses demonstrated that pea flour-based sourdough has a higher protein content than wheat-based sourdough, emphasizing its ability to nutritionally enrich bakery products. The results suggest that pea sourdough significantly enhances the nutritional value of bread, providing a higher level of proteins. In conclusion, pea flour offers a viable alternative to wheat flour in bread-making, with significant implications for food innovation. Future research is recommended to optimize fermentation conditions and explore the impact of different microbial strains, paving the way for broader applications in fermented foods.
References
Aguayo-Giménez, E. (2019). Promoción del consumo de fruta de hueso por su riqueza funcional. Agricultural and Food Sciences, Medicine, 68–79.
Banderas, B. M. J. (2012). Análisis proximal de los principales componentes nutricionales de arroz pulido, harina de trigo de flor, maíz amarillo y papa chola. QUITO / PUCE / 2012. https://repositorio.puce.edu.ec/handle/123456789/20939
Chaudhary, A., Marinangeli, C. P. F., Tremorin, D., & Mathys, A. (2018). Nutritional Combined Greenhouse Gas Life Cycle Analysis for Incorporating Canadian Yellow Pea into Cereal-Based Food Products. Nutrients, 10(4), 490. https://doi.org/10.3390/NU10040490
De Vuyst, L., Comasio, A., & Kerrebroeck, S. Van. (2021). Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. In Critical Reviews in Food Science and Nutrition, 63(15), 2447-2479https://doi.org/10.1080/10408398.2021.1976100
De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 100, 49–160. https://doi.org/10.1016/bs.aambs.2017.02.003
Delcour, J. A. (2010). Structure of Cereals. Principles of Cereal Science and Technology, Third Edition, 1–22. http://dx.doi.org/10.1094/9781891127632.001
Devi, T. S., Prabina, B. J., Gomathy, M., & Kumutha, K. (2020). Isolation and Characterization of Lactic acid bacteria from homemade fermented foods for probiotic applications. International Journal of Current Microbiology and Applied Sciences, 9(2), 1355–1362. https://doi.org/10.20546/IJCMAS.2020.902.158
Gänzle, M. G. (2015). Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/J.COFS.2015.03.001
Garcia, B. E., Rodriguez, E., Salazar, Y., Valle, P. A., Flores-Gallegos, A. C., Rutiaga-Quiñones,M., & Rodriguez-Herrera, R. (2021). Primary Model for Biomass Growth Prediction in Batch Fermentation. Symmetry, 13(8). https://doi.org/10.3390/SYM13081468
González-Montemayor, A.M., Solanilla-Duque, J.F., Flores-Gallegos, A.C., López-Badillo, C.M., Ascacio-Valdés, J.A., & Rodríguez-Herrera, R. (2021). Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread Citation. Foods, 10(9),2227. https://doi.org/10.3390/foods10092227
Kaigorodova, I. M., Ushakov, V. A., Golubkina, N. A., Kotlyar, I. P., Pronina, E. P., & Antoshkina, M. S. (2022). Nutritional value, quality of raw materials and food value of vegetable pea culture (Pisum sativum L.). Vegetable Crops of Russia, 3, 16–32. https://doi.org/10.18619/2072-9146-2022-3-16-32
Kezer, G. (2022). Functional Perspective on Sourdough Bread. Turkish Journal of Agriculture - Food Science and Technology, 10(8), 1410–1414. https://doi.org/10.24925/TURJAF.V10I8.1410-1414.4860
Kitaevskaya, S. V., & Reshetnik, O. A. (2020). Effects of low-temperature treatment on the activity of proteolytic enzymes in various flour types. Proceedings of Universities. Applied Chemistry and Biotechnology, 10(3), 439–449. https://doi.org/10.21285/2227-2925-2020-10-3-439-449
Kozin, A. V., Abramova, L. S., Guseva, E. S., & Derunets, I. V. (2022). Establishment of metrological parameters of the method for measuring the protein mass fraction in fish food products by the Kjeldahl method. Food Systems, 4(4), 239–245. https://doi.org/10.21323/2618-9771-2021-4-4-239-245
Kumari, T., & Deka, S. C. (2021). Potential health benefits of garden pea seeds and pods: A review. Legume Science, 3(2). https://doi.org/10.1002/LEG3.82
Lau, S. W., Chong, A. Q., Chin, N. L., Talib, R. A., & Basha, R. K. (2021). Sourdough Microbiome Comparison and Benefits. Microorganisms, 9(7). https://doi.org/10.3390/MICROORGANISMS9071355
Lemmens, E., De Brier, N., Spiers, K. M., Garrevoet, J., Falkenberg, G., Smolders, E., & Delcour, J. A. (2019). Steeping and germination of wheat (Triticum aestivum L.). II. Changes in spatial distribution and speciation of iron and zinc elements using pearling, synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure imaging. Journal of Cereal Science, 90. https://doi.org/10.1016/J.JCS.2019.102843
Li, J., Shi, A., Liu, H., Hu, H., Wang, Q., Adhikari, B., Jiao, B., & Pignitter, M. (2022). Effect of Hydrothermal Cooking Combined with High-Pressure Homogenization and Enzymatic Hydrolysis on the Solubility and Stability of Peanut Protein at Low pH. Foods, 11(9). https://doi.org/10.3390/FOODS11091289
Martorana, A., Giuffrè, A. M., Capocasale, M., Zappia, C., & Sidari, R. (2018). Sourdoughs as a source of lactic acid bacteria and yeasts with technological characteristics useful for improved bakery products. European Food Research and Technology, 244(10), 1873–1885. https://doi.org/10.1007/S00217-018-3100-X/METRICS
Montemurro, M., Coda, R., & Rizzello, C. G. (2019). Recent advances in the use of sourdough biotechnology in pasta making. Foods, 8(4). https://doi.org/10.3390/FOODS8040129
Nishinari, K., Kohyama, K., Kumagai, H., Funami, T., & Bourne, M. C. (2013). Parameters of Texture Profile Analysis. Food Science and Technology Research, 19(3), 519–521. https://doi.org/10.3136/FSTR.19.519
Nosworthy, M. G., Tulbek, M. C., & House, J. D. (2017). Does the concentration, isolation, or deflavoring of pea, lentil, and faba bean protein alter protein quality? Cereal Foods World, 62(4), 139–142. https://doi.org/10.1094/CFW-62-4-0139
Pico, J., Bernal, J., & Gómez, M. (2015). Wheat bread aroma compounds in crumb and crust: A review. Food Research International (Ottawa, Ont.), 75, 200–215. https://doi.org/10.1016/J.FOODRES.2015.05.051
Priya, A., Umarani, & Chukwuebuka, E. (2018). In vitro Anticancer Activity of Pisum sativum Seed against Breast Cancer Cell Line (MCF-7). International Journal of Scientific & Engineering Research, 6.
Reale, A., Di Stasio, L., Di Renzo, T., De Caro, S., Ferranti, P., Picariello, G., Addeo, F., & Mamone, G. (2021). Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chemistry, 359. https://doi.org/10.1016/J.FOODCHEM.2021.129955
Sánchez-Aceves, L. M. (2014). Inclusión de proteína de chícharo en el desarrollo de alimentos funcionales de panificación (pan de caja). http://ri.uaemex.mx/handle/20.500.11799/14732
Schober, T. J., O’Brien, C. M., McCarthy, D., Darnedde, A., & Arendt, E. K. (2003). Influence of gluten-free flour mixes and fat powders on the quality of gluten-free biscuits. European Food Research and Technology, 216(5), 369–376. https://doi.org/10.1007/S00217-003-0694-3
Secretaría de Economía. (2017, November 1). Conoce más sobre la industria panificadora en México. https://www.gob.mx/se/articulos/conoce-mas-sobre-la-industria-panificadora-en-mexico. https://www.gob.mx/se/articulos/conoce-mas-sobre-la-industria-panificadora-en-mexico
Song, D. H., Chun, B. H., Lee, S., Reddy, C. K., Jeon, C. O., & Lee, C. H. (2020). Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities. Journal of Microbiology and Biotechnology, 30(11), 1697–1705. https://doi.org/10.4014/JMB.2007.07026
Wu, D. T., Li, W. X., Wan, J. J., Hu, Y. C., Gan, R. Y., & Zou, L. (2023). A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods, 12(13). https://doi.org/10.3390/FOODS12132527
Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.-Y., Zou, L. A., Wu, D.-T., Li, W.-X., Wan, J.-J., Hu, Y.-C., Gan, R.-Y., & Zou, L. (2023). A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods, 12(13), 2527. https://doi.org/10.3390/FOODS12132527
Zhang, Y., Zhou, X., Zhong, J., Tan, L., & Liu, C. (2019). Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocolloids, 93, 325–334. https://doi.org/10.1016/J.FOODHYD.2019.02.032

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.