EN PRENSA. Caracterización química de aceite esencial de Tagetes linifolia: pruebas in vitro e in vivo en frutos de Fragaria × ananassa. EN PRENSA
PDF

Palabras clave

Tagetes linifolia
moho gris
Incidencia
Severidad

Métricas de PLUMX 

Resumen

Los aceites esenciales son eficaces para controlar patógenos, además, son reconocidos como seguros. El objetivo fue caracterizar los compuestos químicos en el aceite esencial de T. linifolia y evaluar su efecto in vitro y en postcosecha de frutos de fresa contra B. cinerea. El aceite esencial se analizó mediante cromatografía de gases-masas. Se evaluaron in vitro seis concentraciones de aceite (1, 0.5, 0.1, 0.01, 0.001 y 0.0001%), un testigo y fungicida Cabrio C contra B. cinerea. Mediante análisis Probit se estimó la concentración letal CL90 y CL50. Posteriormente, CL90, CL50, Tween 80 al 0.01% y un testigo se evaluaron en la germinación in vitro de conidios. CL90 y CL50 fueron retomados para su evaluación en frutos de fresa. En el aceite esencial se identificaron veinticinco compuestos químicos. Las concentraciones de 1 y 0.5% inhibieron a B. cinerea sin diferencias estadísticas con respecto al fungicida comercial. Tween 80 promovió la germinación de conidios (89%) y con la concentración letal CL90 (1.6%) no hubo germinación. Los frutos tratados con CL90 mostraron menor incidencia y severidad. El aceite esencial tuvo efecto fungistático contra B. cinerea y efecto protector en los frutos de fresa.

https://doi.org/10.15741/revbio.13.e1767
PDF

Citas

Abdi-Moghadam, Z., Mazaheri, Y., Rezagholizade-Shirvan, A., Mahmoudzadeh, M., Sarafraz, M., Mohtashami, M., Shokri, S., Ghasemi, A., Nickfar, F., Darroudi, M., Hossieni, H., Hadian, Z., Shamloo, E., & Rezaei, Z. (2023). The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon, 9(11), Article e21386. https://doi.org/10.1016/j.heliyon.2023.e21386

Achimón, F., Brito, V. D., Pizzolitto, R. P., Sánchez, A. R., Gómez, E. A., & Zygadlo, J. A. (2021). Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Revista Argentina de Microbiología, 53(4), 292-303. https://doi.org/10.1016/j.ram.2020.12.001

Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., & Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), Article e29128. https://doi.org/10.1016/j.heliyon.2024.e29128

Andrade, A. C., Rosalen, P. L., Freires, I. A., Scotti, M. T., De Aquino, S. G., & De Castro, R. D. (2019). Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Current Topics in Medicinal Chemistry, 18(29), 2481-2490. https://doi.org/10.2174/1568026618666181115103104

Bandana, K., Raina, R., Kumari, M., & Rani, J. (2018). Tagetes minuta: An overview. International Journal of Chemical Studies, 6(2), 3711-3717. https://www.chemijournal.com/archives/2018/vol6issue2/PartAZ/6-2-452-241.pdf

Castillo Márquez. L. E. (2007). Introducción al SAS para Windows. Universidad Autónoma Chapingo. 3 edición. 295 p.

Chen-Xing, Z., Mi, Z., Jing, H., Ya-Fang, D., & Bao-Cai, L. (2014). Chemical composition and antioxidant activity of the essential oil from the flowers of Artemisia austro-yunnanensis. Journal of Chemical and Pharmaceutical Research, 6(7),1583-1587. https://jocpr.com/vol6-iss7-2014/JCPR-2014-6-7-1583-1587.pdf

Coelho, N., Gonçalves, S., & Romano, A. (2020). Endemic plant species conservation: Biotechnological approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345

Da Costa, D. G., Ribeiro, W. R., Gonçalves, D. C., Dian, V. S., Da Silva Xavier, A., De Oliveira, Á. A., Menini, L., & Costa, H. (2023). Use of Melaleuca alternifolia essential oil as an efficient strategy to extend the shelf life of banana fruits. Biochemical Systematics and Ecology, 108, Article 104641. https://doi.org/10.1016/j.bse.2023.104641

De Oliveira, D. H., Abib, P. B., Giacomini, R. X., Lenardão, E. J., Schiedeck, G., Wilhelm, E. A., Luchese, C., Savegnago, L., & Jacob, R. G. (2018). Antioxidant and antifungal activities of the flowers’ essential oil of Tagetes minuta, (Z)-tagetone and thiotagetone. Journal of Essential Oil Research, 31(2), 160-169. https://doi.org/10.1080/10412905.2018.1519465

Edward, D. (2021). Impact of fungicide pesticides on human and environment. Journal of Agricultural Science and Food Research, 12(3), 1-2. https://www.longdom.org/open-access/impact-of-fungicide-pesticides-on-human-and-environment.pdf

Elad, Y., Pertot, I., Cotes Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. In: Botrytis the fungus, the pathogen and its management in agricultural systems. Fillinger, S., & Elad, Y. (pp. 413-486). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_20

Erhonyota, C., Edo, G. I., & Onoharigho, F. O. (2023). Comparison of poison plate and agar well diffusion method determining the antifungal activity of protein fractions. Acta Ecológica Sinica, 43(4), 684-689. https://doi.org/10.1016/j.chnaes.2022.08.006

Falleh, H., Jemaa, M. B., Saada, M., & Ksouri, R. (2020). Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, Article 127268. https://doi.org/10.1016/j.foodchem.2020.127268

Food and Agriculture Organization Statistical database [FAOSTAT]. (2025, 30 de julio). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize

Fincheira, P., Jofré, I., Espinoza, J., Levío-Raimán, M., Tortella, G., Oliveira, H. C., Diez, M. C., Quiroz, A., & Rubilar, O. (2023). The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: Mechanistic insights into antifungal activity. Microbiological Research, 277, Article 127486. https://doi.org/10.1016/j.micres.2023.127486

Fokkema, N. J. (1973). The role of saprophytic fungi in antagonism against Dreschlera sorokiniana (Helminthosporium sativum) on agar plates and rye leaves with pollen. Physiological Plant Pathology, 3(2),195-202. https://doi.org/10.1016/0048-4059(73)90082-9

Fontana, D. C., Neto, D. D., Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, Article 108980. https://doi.org/10.1016/j.ijfoodmicro.2020.108980

Freche, E., Gieng, J., Pignotti, G. A., Ibrahim, S. A., & Feng, X. (2022). Applications of lemon or Cinnamon essential oils in strawberry fruit preservation: A review. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16526

Freche, E., Gieng, J., Pignotti, G. A., Ibrahim, S. A., Tran, H. T., Ahn, D. U., & Feng, X. (2023). Effects of lemon or cinnamon essential oil vapor on physicochemical properties of strawberries during storage. Han-guksikpumjeojang-yutonghakoeji, 30(4), 549-561. https://doi.org/10.11002/kjfp.2023.30.4.549

Georgieva, R., Delibaltova, V., & Chavdarov, P. (2022). Change in agronomic characteristics and essential oil composition of coriander after application of foliar fertilizers and biostimulators. Industrial Crops and Products, 181, Article 114819. https://doi.org/10.1016/j.indcrop.2022.114819

Gül, E., Karakaya, A., & Ergül, A. (2024). Mutations associated with boscalid and pyraclostrobin resistance of Botrytis cinerea from vegetable fields in Turkey. Tropical Plant Pathology, 49(3), 429-435. https://doi.org/10.1007/s40858-024-00646-4

Haque, E., Irfan, S., Kamil, M., Sheikh, S., Hasan, A., Ahmad, A., Lakshmi, V., Nazir, A., & Mir, S. S. (2016). Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology, 85(4), 436-443. https://doi.org/10.1134/s0026261716040093

Hleba, L., Hlebová, M., & Charousová, I. (2024). In vitro evaluation of synergistic essential oils combination for enhanced antifungal activity against Candida spp. Life, 14(6), 693. https://doi.org/10.3390/life14060693

Israfi, N. A. M., Ali, M. I. A. M., Manickam, S., Sun, X., Goh, B. H., Tang, S. Y., Ismail, N., Razis, A. F. A., Ch’ng, S. E., & Chan, K. W. (2022). Essential oils and plant extracts for tropical fruits protection: From farm to table. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.999270

Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonça, A. F., Cooper, B., Thomas-Popo, E., Gordon, K. W., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86(2), Article 100025. https://doi.org/10.1016/j.jfp.2022.100025

Jacques, S., Lenzo, L., Stevens, K., Stevens, Lawrence, J., & Tan, K. C. (2021). An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant Methods, 17(52), 4-12. https://doi.org/10.1186/s13007-021-00751-4

Ji, Y., Hu, W., Guan, Y., & Saren, G. (2024). Effects of plant essential oil treatment on the growth of pathogenic fungi and the activity of defense-related enzymes of fungi-inoculated blueberry. Horticulturae, 10(4), 318. https://doi.org/10.3390/horticulturae10040318

Kebriti, I., Solgi, M., & Velashjerdi, M. (2025). Improving quality of strawberry by novel essential oil nanoemulsions of Echinophora platyloba combined with Aloe vera gel and gum arabic. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-86259-6

Khan, S., Abdo, A. A. A., Shu, Y., Zhang, Z., & Liang, T. (2023). The extraction and impact of essential oils on bioactive films and food preservation, with emphasis on antioxidant and antibacterial activities a review. Foods, 12(22), Article 4169. https://doi.org/10.3390/foods12224169

Kıran, S., Kujur, A., & Prakash, B. (2016). Assessment of preservative potential of Cinnamomum zeylanicum Blume essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action. Innovative Food Science and Emerging Technologies, 37, 184-191. https://doi.org/10.1016/j.ifset.2016.08.018

McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedling by Helminthosporium sativum. Journal Agricultural Research, 26, 195-217. https://eurekamag.com/research/013/404/013404640.php?srsltid=AfmBOoro6bjNi4Y4u-fwwzS0faGgRaBlzcP-EFreUWaqKnKBee2VGS6I

Mwamburi, L. A., Laing, M., & Miller, R. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67-74. https://doi.org/10.1590/s1517-838246120131077

Padmanabhan, P., Mizran, A., Sullivan, J. A., & Paliyath, G. (2016). Strawberries. En Elsevier eBooks (pp. 193-198). https://doi.org/10.1016/b978-0-12-384947-2.00667-x

Pedroso, M. B., Scariot, F. J., Rocha, R. K. M., Echeverrigaray, S., & Delamare, A. P. L. (2024). Antifungal activity and mechanism of action of monoterpenes against Botrytis cinerea. Ciência e Agrotecnologia, 48. https://doi.org/10.1590/1413-7054202448018823

Petrasch, S., Knapp, S. J., Van Kan, J., & Blanco-Ulate, B. (2019). Gray mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877-892. https://doi.org/10.1111/mpp.12794

Qaderi, R., Mezzetti, B., Capocasa, F., & Mazzoni, L. (2022). Stability of strawberry fruit (Fragaria x ananassa Duch.) nutritional quality at different storage conditions. Applied Sciences, 13(1), 313. https://doi.org/10.3390/app13010313

Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24-27. https://doi.org/10.1016/j.postharvbio.2012.07.007

Ruíz-González, M. Á., Solano-Vidal, R., Valadez-Moctezuma, E., & Serrato-Cruz, M. Á. (2025a). Compuestos químicos del aceite esencial de Tagetes lucida y efecto contra Botrytis cinerea. Revista Mexicana de Ciencias Agrícolas, 16(3), Article e3613. https://doi.org/10.29312/remexca.v16i3.3613

Ruíz-González, M. Á., Solano-Vidal, R., Valadez-Moctezuma, E., & Serrato-Cruz, M. Á. (2025b). Destilados y aceite homeopático de Tagetes remotiflora: efecto en Botrytis cinerea. Revista Mexicana de Ciencias Agrícolas, 16(2), Article e3494. https://doi.org/10.29312/remexca.v16i2.3494

Salehi, B., Valussi, M., Morais-Braga, M. F. B., Carneiro, J. N. P., Leal, A. L. A. B., Coutinho, H. D. M., Vitalini, S., Kręgiel, D., Antolak, H., Sharifi‐Rad, M., Silva, N. C. C., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S., & Sharifi‐Rad, J. (2018). Tagetes spp. essential oils and other extracts: chemical characterization and biological activity. Molecules, 23(11), Article 2847. https://doi.org/10.3390/molecules23112847

Serrato, C. M. A. (2014ª). El recurso genético cempoalxóchitl (Tagetes spp.) de México (Diagnóstico). Chapingo, Estado de México. https://www.gob.mx/cms/uploads/attachment/file/225091/El_recurso_gen_tico_del_cempoalxochitl__tagetes_spp__de_mexico__diagnostico_.pdf

Serrato, C. M. A., Bautista, R. F., & Monroy, S. A. S. (2014b). Guía para conocer el Germoplasma Mexicano de Cempoalxóchitl (Tagetes spp.). México. https://www.gob.mx/cms/uploads/attachment/file/225099/Guia_para_conocer_el_germoplasma_mexicano_de_cempoalxochitl__tagetes_spp_.pdf

Shao, W., Zhao, Y., & Ma, Z. (2020). Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology, 111(3), 455-463. https://doi.org/10.1094/phyto-07-20-0313-ia

Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2024, 30 de julio). Anuario Estadístico de la Producción Agrícola. https://nube.agricultura.gob.mx/cierre_agricola/

Souiy, Z. (2023). Essential oil extraction process. En Biochemistry. https://doi.org/10.5772/intechopen.113311

Taghavi, T., Kim, C., & Rahemi, A. (2018). Role of natural volatiles and essential oils in extending shelf life and controlling postharvest microorganisms of small fruits. Microorganisms, 6(4), Article 104. https://doi.org/10.3390/microorganisms6040104

Tančinová, D., Mašková, Z., Mendelová, A., Foltinová, D., Barboráková, Z., & Medo, J. (2022). Antifungal activities of essential oils in vapor phase against Botrytis cinerea and their potential to control postharvest strawberry gray mold. Foods, 11(19), Article 2945. https://doi.org/10.3390/foods11192945

Tu, G., Wang, Y., Ji, Y., & Zou, X. (2014). The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World Journal of Microbiology & Biotechnology, 31(1), 219-226. https://doi.org/10.1007/s11274-014-1779-9

Turner, B. L. (1996). Tageteae and Anthemideae. In Turner B. L. The comps of Mexico - A systematic account of the family Asteraceae (pp. 73-86). Plant Resources Center, Department of Botany, the University of Texas. https://books.google.com.mx/books/about/The_Comps_of_Mexico_Tageteae_and_Anthemi.html?id=6gZHAAAAYAAJ&redir_esc=y

Vanti, G. L., Leshem, Y., & Masaphy S. (2021). Resistance response enhancement and reduction of Botrytis cinerea infection in strawberry fruit by Morchella conica mycelial extract. Postharvest Biology and Technology, 175. https://doi.org/10.1016/j.postharvbio.2021.111470

Xu, J., & Ouyang, G. (2018). Extraction: Solid-Phase microextraction. En Elsevier eBooks. https://doi.org/10.1016/b978-0-12-409547-2.14552-4

Zhang, L., Huang, Y., Xiao, Z., Feng, X., Zhang, J., Chen, S., He, H., Liao, S., Wang, Z., & Si, H. (2025). Antifungal action of β-pinene derivatives containing quaternary ammonium scaffold against Rhizoctonia solani with damaging cell membranes and affecting energy metabolism. Pesticide Biochemistry and Physiology, Article 106586. https://doi.org/10.1016/j.pestbp.2025.106586

Zubrod, J. P., Bundschuh, M., Arts, G., Brühl, C. A., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J. J., Rohr, J. R., Scharmüller, A., Smalling, K. L., Stehle, S., Schulz, R., & Schäfer, R. B. (2019). Fungicides: an overlooked pesticide class?. Environmental Science & Technology, 53(7), 3347-3365. https://doi.org/10.1021/acs.est.8b04392

Zulu, L., Gao, H., Zhu, Y., Wu, H., Xie, Y., Liu, X., Yao, H., & Rao, Q. (2023). Antifungal effects of seven plant essential oils against Penicillium digitatum. Chemical and Biological Technologies in Agriculture, 10(1). https://doi.org/10.1186/s40538-023-00434-3

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional