Abstract
Essential oils are effective in controlling pathogens and are recognized as safe. The objective was to characterize the chemical compounds in essential oil of T. linifolia and to evaluate their effect in vitro and in postharvest strawberry fruits against B. cinerea. The essential oil was analyzed by gas-mass chromatography. Six concentrations of oil (1, 0.5, 0.1, 0.1, 0.01, 0.001 and 0.0001%), a control and Cabrio C fungicide were evaluated in vitro against B. cinerea. The lethal concentration LC90 and LC50 were estimated by Probit analysis. Subsequently, CL90, CL50, Tween 80 0.01% and a control were evaluated in the in vitro germination of conidia. CL90 and CL50 were retaken for evaluation on strawberry fruits. Twenty-five chemical compounds were identified in the essential oil. Concentrations of 1 and 0.5% inhibited B. cinerea without statistical differences with respect to the commercial fungicide. Tween 80 promoted conidial germination (89%) and with the lethal concentration CL90 (1.6%) there was no germination. Fruit treated with CL90 showed lower incidence and severity. The essential oil had a fungistatic effect against B. cinerea and a protective effect on strawberry fruits.
References
Abdi-Moghadam, Z., Mazaheri, Y., Rezagholizade-Shirvan, A., Mahmoudzadeh, M., Sarafraz, M., Mohtashami, M., Shokri, S., Ghasemi, A., Nickfar, F., Darroudi, M., Hossieni, H., Hadian, Z., Shamloo, E., & Rezaei, Z. (2023). The significance of essential oils and their antifungal properties in the food industry: A systematic review. Heliyon, 9(11), Article e21386. https://doi.org/10.1016/j.heliyon.2023.e21386
Achimón, F., Brito, V. D., Pizzolitto, R. P., Sánchez, A. R., Gómez, E. A., & Zygadlo, J. A. (2021). Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Revista Argentina de Microbiología, 53(4), 292-303. https://doi.org/10.1016/j.ram.2020.12.001
Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., & Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), Article e29128. https://doi.org/10.1016/j.heliyon.2024.e29128
Andrade, A. C., Rosalen, P. L., Freires, I. A., Scotti, M. T., De Aquino, S. G., & De Castro, R. D. (2019). Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Current Topics in Medicinal Chemistry, 18(29), 2481-2490. https://doi.org/10.2174/1568026618666181115103104
Bandana, K., Raina, R., Kumari, M., & Rani, J. (2018). Tagetes minuta: An overview. International Journal of Chemical Studies, 6(2), 3711-3717. https://www.chemijournal.com/archives/2018/vol6issue2/PartAZ/6-2-452-241.pdf
Castillo Márquez. L. E. (2007). Introducción al SAS para Windows. Universidad Autónoma Chapingo. 3 edición. 295 p.
Chen-Xing, Z., Mi, Z., Jing, H., Ya-Fang, D., & Bao-Cai, L. (2014). Chemical composition and antioxidant activity of the essential oil from the flowers of Artemisia austro-yunnanensis. Journal of Chemical and Pharmaceutical Research, 6(7),1583-1587. https://jocpr.com/vol6-iss7-2014/JCPR-2014-6-7-1583-1587.pdf
Coelho, N., Gonçalves, S., & Romano, A. (2020). Endemic plant species conservation: Biotechnological approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345
Da Costa, D. G., Ribeiro, W. R., Gonçalves, D. C., Dian, V. S., Da Silva Xavier, A., De Oliveira, Á. A., Menini, L., & Costa, H. (2023). Use of Melaleuca alternifolia essential oil as an efficient strategy to extend the shelf life of banana fruits. Biochemical Systematics and Ecology, 108, Article 104641. https://doi.org/10.1016/j.bse.2023.104641
De Oliveira, D. H., Abib, P. B., Giacomini, R. X., Lenardão, E. J., Schiedeck, G., Wilhelm, E. A., Luchese, C., Savegnago, L., & Jacob, R. G. (2018). Antioxidant and antifungal activities of the flowers’ essential oil of Tagetes minuta, (Z)-tagetone and thiotagetone. Journal of Essential Oil Research, 31(2), 160-169. https://doi.org/10.1080/10412905.2018.1519465
Edward, D. (2021). Impact of fungicide pesticides on human and environment. Journal of Agricultural Science and Food Research, 12(3), 1-2. https://www.longdom.org/open-access/impact-of-fungicide-pesticides-on-human-and-environment.pdf
Elad, Y., Pertot, I., Cotes Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. In: Botrytis the fungus, the pathogen and its management in agricultural systems. Fillinger, S., & Elad, Y. (pp. 413-486). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23371-0_20
Erhonyota, C., Edo, G. I., & Onoharigho, F. O. (2023). Comparison of poison plate and agar well diffusion method determining the antifungal activity of protein fractions. Acta Ecológica Sinica, 43(4), 684-689. https://doi.org/10.1016/j.chnaes.2022.08.006
Falleh, H., Jemaa, M. B., Saada, M., & Ksouri, R. (2020). Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, Article 127268. https://doi.org/10.1016/j.foodchem.2020.127268
Food and Agriculture Organization Statistical database [FAOSTAT]. (2025, 30 de julio). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize
Fincheira, P., Jofré, I., Espinoza, J., Levío-Raimán, M., Tortella, G., Oliveira, H. C., Diez, M. C., Quiroz, A., & Rubilar, O. (2023). The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: Mechanistic insights into antifungal activity. Microbiological Research, 277, Article 127486. https://doi.org/10.1016/j.micres.2023.127486
Fokkema, N. J. (1973). The role of saprophytic fungi in antagonism against Dreschlera sorokiniana (Helminthosporium sativum) on agar plates and rye leaves with pollen. Physiological Plant Pathology, 3(2),195-202. https://doi.org/10.1016/0048-4059(73)90082-9
Fontana, D. C., Neto, D. D., Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, Article 108980. https://doi.org/10.1016/j.ijfoodmicro.2020.108980
Freche, E., Gieng, J., Pignotti, G. A., Ibrahim, S. A., & Feng, X. (2022). Applications of lemon or Cinnamon essential oils in strawberry fruit preservation: A review. Journal of Food Processing and Preservation, 46(9). https://doi.org/10.1111/jfpp.16526
Freche, E., Gieng, J., Pignotti, G. A., Ibrahim, S. A., Tran, H. T., Ahn, D. U., & Feng, X. (2023). Effects of lemon or cinnamon essential oil vapor on physicochemical properties of strawberries during storage. Han-guksikpumjeojang-yutonghakoeji, 30(4), 549-561. https://doi.org/10.11002/kjfp.2023.30.4.549
Georgieva, R., Delibaltova, V., & Chavdarov, P. (2022). Change in agronomic characteristics and essential oil composition of coriander after application of foliar fertilizers and biostimulators. Industrial Crops and Products, 181, Article 114819. https://doi.org/10.1016/j.indcrop.2022.114819
Gül, E., Karakaya, A., & Ergül, A. (2024). Mutations associated with boscalid and pyraclostrobin resistance of Botrytis cinerea from vegetable fields in Turkey. Tropical Plant Pathology, 49(3), 429-435. https://doi.org/10.1007/s40858-024-00646-4
Haque, E., Irfan, S., Kamil, M., Sheikh, S., Hasan, A., Ahmad, A., Lakshmi, V., Nazir, A., & Mir, S. S. (2016). Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology, 85(4), 436-443. https://doi.org/10.1134/s0026261716040093
Hleba, L., Hlebová, M., & Charousová, I. (2024). In vitro evaluation of synergistic essential oils combination for enhanced antifungal activity against Candida spp. Life, 14(6), 693. https://doi.org/10.3390/life14060693
Israfi, N. A. M., Ali, M. I. A. M., Manickam, S., Sun, X., Goh, B. H., Tang, S. Y., Ismail, N., Razis, A. F. A., Ch’ng, S. E., & Chan, K. W. (2022). Essential oils and plant extracts for tropical fruits protection: From farm to table. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.999270
Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonça, A. F., Cooper, B., Thomas-Popo, E., Gordon, K. W., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86(2), Article 100025. https://doi.org/10.1016/j.jfp.2022.100025
Jacques, S., Lenzo, L., Stevens, K., Stevens, Lawrence, J., & Tan, K. C. (2021). An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant Methods, 17(52), 4-12. https://doi.org/10.1186/s13007-021-00751-4
Ji, Y., Hu, W., Guan, Y., & Saren, G. (2024). Effects of plant essential oil treatment on the growth of pathogenic fungi and the activity of defense-related enzymes of fungi-inoculated blueberry. Horticulturae, 10(4), 318. https://doi.org/10.3390/horticulturae10040318
Kebriti, I., Solgi, M., & Velashjerdi, M. (2025). Improving quality of strawberry by novel essential oil nanoemulsions of Echinophora platyloba combined with Aloe vera gel and gum arabic. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-86259-6
Khan, S., Abdo, A. A. A., Shu, Y., Zhang, Z., & Liang, T. (2023). The extraction and impact of essential oils on bioactive films and food preservation, with emphasis on antioxidant and antibacterial activities a review. Foods, 12(22), Article 4169. https://doi.org/10.3390/foods12224169
Kıran, S., Kujur, A., & Prakash, B. (2016). Assessment of preservative potential of Cinnamomum zeylanicum Blume essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action. Innovative Food Science and Emerging Technologies, 37, 184-191. https://doi.org/10.1016/j.ifset.2016.08.018
McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedling by Helminthosporium sativum. Journal Agricultural Research, 26, 195-217. https://eurekamag.com/research/013/404/013404640.php?srsltid=AfmBOoro6bjNi4Y4u-fwwzS0faGgRaBlzcP-EFreUWaqKnKBee2VGS6I
Mwamburi, L. A., Laing, M., & Miller, R. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67-74. https://doi.org/10.1590/s1517-838246120131077
Padmanabhan, P., Mizran, A., Sullivan, J. A., & Paliyath, G. (2016). Strawberries. En Elsevier eBooks (pp. 193-198). https://doi.org/10.1016/b978-0-12-384947-2.00667-x
Pedroso, M. B., Scariot, F. J., Rocha, R. K. M., Echeverrigaray, S., & Delamare, A. P. L. (2024). Antifungal activity and mechanism of action of monoterpenes against Botrytis cinerea. Ciência e Agrotecnologia, 48. https://doi.org/10.1590/1413-7054202448018823
Petrasch, S., Knapp, S. J., Van Kan, J., & Blanco-Ulate, B. (2019). Gray mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877-892. https://doi.org/10.1111/mpp.12794
Qaderi, R., Mezzetti, B., Capocasa, F., & Mazzoni, L. (2022). Stability of strawberry fruit (Fragaria x ananassa Duch.) nutritional quality at different storage conditions. Applied Sciences, 13(1), 313. https://doi.org/10.3390/app13010313
Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24-27. https://doi.org/10.1016/j.postharvbio.2012.07.007
Ruíz-González, M. Á., Solano-Vidal, R., Valadez-Moctezuma, E., & Serrato-Cruz, M. Á. (2025a). Compuestos químicos del aceite esencial de Tagetes lucida y efecto contra Botrytis cinerea. Revista Mexicana de Ciencias Agrícolas, 16(3), Article e3613. https://doi.org/10.29312/remexca.v16i3.3613
Ruíz-González, M. Á., Solano-Vidal, R., Valadez-Moctezuma, E., & Serrato-Cruz, M. Á. (2025b). Destilados y aceite homeopático de Tagetes remotiflora: efecto en Botrytis cinerea. Revista Mexicana de Ciencias Agrícolas, 16(2), Article e3494. https://doi.org/10.29312/remexca.v16i2.3494
Salehi, B., Valussi, M., Morais-Braga, M. F. B., Carneiro, J. N. P., Leal, A. L. A. B., Coutinho, H. D. M., Vitalini, S., Kręgiel, D., Antolak, H., Sharifi‐Rad, M., Silva, N. C. C., Yousaf, Z., Martorell, M., Iriti, M., Carradori, S., & Sharifi‐Rad, J. (2018). Tagetes spp. essential oils and other extracts: chemical characterization and biological activity. Molecules, 23(11), Article 2847. https://doi.org/10.3390/molecules23112847
Serrato, C. M. A. (2014ª). El recurso genético cempoalxóchitl (Tagetes spp.) de México (Diagnóstico). Chapingo, Estado de México. https://www.gob.mx/cms/uploads/attachment/file/225091/El_recurso_gen_tico_del_cempoalxochitl__tagetes_spp__de_mexico__diagnostico_.pdf
Serrato, C. M. A., Bautista, R. F., & Monroy, S. A. S. (2014b). Guía para conocer el Germoplasma Mexicano de Cempoalxóchitl (Tagetes spp.). México. https://www.gob.mx/cms/uploads/attachment/file/225099/Guia_para_conocer_el_germoplasma_mexicano_de_cempoalxochitl__tagetes_spp_.pdf
Shao, W., Zhao, Y., & Ma, Z. (2020). Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology, 111(3), 455-463. https://doi.org/10.1094/phyto-07-20-0313-ia
Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2024, 30 de julio). Anuario Estadístico de la Producción Agrícola. https://nube.agricultura.gob.mx/cierre_agricola/
Souiy, Z. (2023). Essential oil extraction process. En Biochemistry. https://doi.org/10.5772/intechopen.113311
Taghavi, T., Kim, C., & Rahemi, A. (2018). Role of natural volatiles and essential oils in extending shelf life and controlling postharvest microorganisms of small fruits. Microorganisms, 6(4), Article 104. https://doi.org/10.3390/microorganisms6040104
Tančinová, D., Mašková, Z., Mendelová, A., Foltinová, D., Barboráková, Z., & Medo, J. (2022). Antifungal activities of essential oils in vapor phase against Botrytis cinerea and their potential to control postharvest strawberry gray mold. Foods, 11(19), Article 2945. https://doi.org/10.3390/foods11192945
Tu, G., Wang, Y., Ji, Y., & Zou, X. (2014). The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World Journal of Microbiology & Biotechnology, 31(1), 219-226. https://doi.org/10.1007/s11274-014-1779-9
Turner, B. L. (1996). Tageteae and Anthemideae. In Turner B. L. The comps of Mexico - A systematic account of the family Asteraceae (pp. 73-86). Plant Resources Center, Department of Botany, the University of Texas. https://books.google.com.mx/books/about/The_Comps_of_Mexico_Tageteae_and_Anthemi.html?id=6gZHAAAAYAAJ&redir_esc=y
Vanti, G. L., Leshem, Y., & Masaphy S. (2021). Resistance response enhancement and reduction of Botrytis cinerea infection in strawberry fruit by Morchella conica mycelial extract. Postharvest Biology and Technology, 175. https://doi.org/10.1016/j.postharvbio.2021.111470
Xu, J., & Ouyang, G. (2018). Extraction: Solid-Phase microextraction. En Elsevier eBooks. https://doi.org/10.1016/b978-0-12-409547-2.14552-4
Zhang, L., Huang, Y., Xiao, Z., Feng, X., Zhang, J., Chen, S., He, H., Liao, S., Wang, Z., & Si, H. (2025). Antifungal action of β-pinene derivatives containing quaternary ammonium scaffold against Rhizoctonia solani with damaging cell membranes and affecting energy metabolism. Pesticide Biochemistry and Physiology, Article 106586. https://doi.org/10.1016/j.pestbp.2025.106586
Zubrod, J. P., Bundschuh, M., Arts, G., Brühl, C. A., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J. J., Rohr, J. R., Scharmüller, A., Smalling, K. L., Stehle, S., Schulz, R., & Schäfer, R. B. (2019). Fungicides: an overlooked pesticide class?. Environmental Science & Technology, 53(7), 3347-3365. https://doi.org/10.1021/acs.est.8b04392
Zulu, L., Gao, H., Zhu, Y., Wu, H., Xie, Y., Liu, X., Yao, H., & Rao, Q. (2023). Antifungal effects of seven plant essential oils against Penicillium digitatum. Chemical and Biological Technologies in Agriculture, 10(1). https://doi.org/10.1186/s40538-023-00434-3

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.