Resumen
La aplicación de ultrasonido de alta intensidad (HIU) a proteínas vegetales mejora la funcionalidad. Por ello, esta investigación examinó el impacto del HIU a diferentes niveles de potencia (600, 840 y 1080 W) y duraciones (10, 15 y 20 min) sobre la composición de aminoácidos, hidrosolubilidad, formación de espuma, emulsificación y capacidad antioxidante de proteínas de la semilla de Coccoloba uvifera (CUSP). En comparación con el control (proteína no tratada), las CUSP sometidas a HIU presentaron mayores niveles de ácido glutámico, ácido aspártico, prolina, glicina y serina. La hidrosolubilidad de las muestras tratadas con HIU mejoró significativamente (79.90 y 87.53%). El tratamiento con HIU a 600 W durante 10 min mejoró las propiedades espumantes, mientras que la exposición a 600 y 1080 W durante 15 min mejoró las propiedades emulsionantes. En comparación con el control (52.12 ± 1.85 %), el tratamiento de 840 W durante 15 min mostró alta propiedad antioxidante (96.82 ± 0.16 %). La aplicación de HIU a CUSP mejoró la funcionalidad. Sin embargo, el grado de mejora dependió del nivel de HIU y de la duración del tratamiento, demostrando la viabilidad de HIU para aumentar atributos funcionales de proteínas vegetales para posible utilización en productos alimenticios.
Citas
Adal, E. (2024). Modification of faba bean protein isolate by high-intensity ultrasound treatment: screening of physicochemical, thermal, and structural properties. Journal of Food Measurement and Characterization, 18(3), 2438–2449. https://doi.org/10.1007/s11694-024-02379-z
Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4(10), e00877. https://doi.org/10.1016/j.heliyon.2018.e00877
Official methods of analysis of the association of official analytical chemists [AOAC]. (1990). Official methods of analysis of the association of official analytical chemists (15th ed). https://doi.org/https://es.scribd.com/document/663913126/AOAC-920-87
Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
Brion-Espinoza, I. A., Iñiguez-Moreno, M., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Calderón-Chiu, C., & Calderón-Santoyo, M. (2021). Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis. Food Chemistry: X, 12, 100170. https://doi.org/10.1016/j.fochx.2021.100170
Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., Díaz, J. A., & Ragazzo-Sánchez, J. A. (2022). Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. Colloids and Interfaces, 6(4), 52. https://doi.org/10.3390/colloids6040052
Calderón-Chiu, C., Calderón-Santoyo, M., Herman-Lara, E., & Ragazzo-Sánchez, J. A. (2021). Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, techno-functional properties and antioxidant capacity. Food Hydrocolloids, 112, 106319. https://doi.org/10.1016/j.foodhyd.2020.106319
Collantes-Chávez-Costa, A., Alanis-Rodríguez, E., Yam-Uicab, O., López-Contreras, C., Sarmiento-Muñoz, T., & Tapia-Muñoz, J. L. (2019). Composition, structure and diversity of coastal vegetation in the northeastern of Cozumel, Mexico. Botanical Sciences, 97(2), 135–147. https://doi.org/10.17129/botsci.2044
Corzo‐Martínez, M., Villamiel, M., & Moreno, F. J. (2017). Impact of High‐intensity Ultrasound on Protein Structure and Functionality during Food Processing. In Ultrasound in Food Processing (pp. 417–436). Wiley. https://doi.org/10.1002/9781118964156.ch16
Du, H., Zhang, J., Wang, S., Manyande, A., & Wang, J. (2022). Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. LWT, 155, 112952. https://doi.org/10.1016/j.lwt.2021.112952
Flores‐Jiménez, N. T., Ulloa, J. A., Urías‐Silvas, J. E., & Hidalgo‐Millán, A. (2023). Modification of rheological properties of animal and vegetable proteins treated with high‐intensity ultrasound: A review. Food Frontiers, 4(2), 700–720. https://doi.org/10.1002/fft2.220
González-Muñoz, A., Valle, M., Aluko, R. E., Bazinet, L., & Enrione, J. (2022). Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. Food Science and Human Wellness, 11(6), 1650–1659. https://doi.org/10.1016/J.FSHW.2022.06.024
Hussain, M., Zhong, H., Hussain, K., Manzoor, M. F., Qayum, A., Liu, X., Xu, J., Hussain, A., Ahsan, H. M., & Guan, R. (2024). Emerging high intensity ultrasound for soymilk in boosting bioactivity, amino acids release, reducing anti-nutritional factors and allergenicity. Food Bioscience, 59, 104138. https://doi.org/10.1016/j.fbio.2024.104138
Jadhav, H. B., Das, M., Das, A., V, G., Choudhary, P., Annapure, U., & Alaskar, K. (2024). Enhancing the functionality of plant-based proteins with the application of ultrasound–A review. Measurement: Food, 13, 100139. https://doi.org/10.1016/j.meafoo.2024.100139
Justino, H. de F. M., dos Santos, I. F., de Souza, R. C. N., Sanches, E. A., Bezerra, J. de A., Lamarão, C. V., Pires, A. C. dos S., & Campelo, P. H. (2024). Exploring ultrasound‐assisted technique for enhancing techno‐functional properties of plant proteins: a comprehensive review. International Journal of Food Science & Technology, 59(1), 498–511. https://doi.org/10.1111/ijfs.16673
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2012). Storage Stability of Protein Hydrolysate from Yellow Stripe Trevally ( Selaroides leptolepis ). International Journal of Food Properties, 15(5), 1042–1053. https://doi.org/10.1080/10942912.2010.513025
Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002
Rahman, M. M., Byanju, B., Grewell, D., & Lamsal, B. P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019. https://doi.org/10.1016/j.ultsonch.2020.105019
Rahman, M. M., & Lamsal, B. P. (2021). Ultrasound‐assisted extraction and modification of plant‐based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480. https://doi.org/10.1111/1541-4337.12709
Ramondo, A., Marulo, S., Sorrentino, A., Masi, P., & Di Pierro, P. (2024). Modification of Physicochemical and Functional Properties of Pumpkin Seeds Protein Isolate (PsPI) by High-Intensity Ultrasound: Effect of Treatment Time. ACS Food Science & Technology, 4(1), 40–48. https://doi.org/10.1021/acsfoodscitech.3c00253
Rawat, R., & Saini, C. S. (2023). Modification of sunnhemp (Crotalaria juncea) protein isolate by high intensity ultrasound: Impact on the molecular structure, amino acid composition and nutritional profiling. Food Bioscience, 56, 103100. https://doi.org/10.1016/j.fbio.2023.103100
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 29(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Segura Campos, M. R., Ruiz Ruiz, J., Chel-Guerrero, L., & Betancur Ancona, D. (2015). Coccoloba uvifera (L.) ( Polygonaceae ) Fruit: Phytochemical Screening and Potential Antioxidant Activity. Journal of Chemistry, 2015(1), 1–9. https://doi.org/10.1155/2015/534954
Sun, X., Abioye, R. O., Acquah, C., & Udenigwe, C. C. (2023). Application of Ultrasound Technology in Plant-Based Proteins: Improving Extraction, Physicochemical, Functional, and Nutritional Properties. In Green Protein Processing Technologies from Plants (pp. 265–289). Springer International Publishing. https://doi.org/10.1007/978-3-031-16968-7_11
Vera-Salgado, J., Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., López-García, U. M., & Ragazzo-Sánchez, J. A. (2022). Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. Colloids and Interfaces, 6(4), 50. https://doi.org/10.3390/colloids6040050
World Health Organization/Food and Agricultural Organization [WHO/FAO]. (2007).Report of a Joint WHO/FAO/UNU Expert Consultation 2007. WHO Technical Report Series No. 935. https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf
Xue, F., Zhu, C., Liu, F., Wang, S., Liu, H., & Li, C. (2018). Effects of high‐intensity ultrasound treatment on functional properties of plum ( Pruni domesticae semen ) seed protein isolate. Journal of the Science of Food and Agriculture, 98(15), 5690–5699. https://doi.org/10.1002/jsfa.9116
Yu, N., Jiang, C., Ning, F., Hu, Z., Shao, S., Zou, X., Meng, X., & Xiong, H. (2021). Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chemistry, 345, 128542. https://doi.org/10.1016/J.FOODCHEM.2020.128542
Zhao, R., Liu, X., Liu, W., Liu, Q., Zhang, L., & Hu, H. (2022). Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrasonics Sonochemistry, 85, 105969. https://doi.org/10.1016/j.ultsonch.2022.105969
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional