EN PRENSA. Aplicación de ultrasonido de alta intensidad a proteínas de semillas de Coccoloba uvifera y su efecto sobre el perfil de aminoácidos, propiedades tecno-funcionales y capacidad antioxidante. EN PRENSA
pdf

Palabras clave

Proteína vegetal
Modificación de proteínas
Distribución del tamaño de partículas
Emulsiones
Propiedades tecno-funcionales

Métricas de PLUMX 

Resumen

La aplicación de ultrasonido de alta intensidad (HIU) a proteínas vegetales mejora la funcionalidad. Por ello, esta investigación examinó el impacto del HIU a diferentes niveles de potencia (600, 840 y 1080 W) y duraciones (10, 15 y 20 min) sobre la composición de aminoácidos, hidrosolubilidad, formación de espuma, emulsificación y capacidad antioxidante de proteínas de la semilla de Coccoloba uvifera (CUSP). En comparación con el control (proteína no tratada), las CUSP sometidas a HIU presentaron mayores niveles de ácido glutámico, ácido aspártico, prolina, glicina y serina. La hidrosolubilidad de las muestras tratadas con HIU mejoró significativamente (79.90 y 87.53%). El tratamiento con HIU a 600 W durante 10 min mejoró las propiedades espumantes, mientras que la exposición a 600 y 1080 W durante 15 min mejoró las propiedades emulsionantes. En comparación con el control (52.12 ± 1.85 %), el tratamiento de 840 W durante 15 min mostró alta propiedad antioxidante (96.82 ± 0.16 %). La aplicación de HIU a CUSP mejoró la funcionalidad. Sin embargo, el grado de mejora dependió del nivel de HIU y de la duración del tratamiento, demostrando la viabilidad de HIU para aumentar atributos funcionales de proteínas vegetales para posible utilización en productos alimenticios.

https://doi.org/10.15741/revbio.12.e1787
pdf

Citas

Adal, E. (2024). Modification of faba bean protein isolate by high-intensity ultrasound treatment: screening of physicochemical, thermal, and structural properties. Journal of Food Measurement and Characterization, 18(3), 2438–2449. https://doi.org/10.1007/s11694-024-02379-z

Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4(10), e00877. https://doi.org/10.1016/j.heliyon.2018.e00877

Official methods of analysis of the association of official analytical chemists [AOAC]. (1990). Official methods of analysis of the association of official analytical chemists (15th ed). https://doi.org/https://es.scribd.com/document/663913126/AOAC-920-87

Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999

Brion-Espinoza, I. A., Iñiguez-Moreno, M., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Calderón-Chiu, C., & Calderón-Santoyo, M. (2021). Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis. Food Chemistry: X, 12, 100170. https://doi.org/10.1016/j.fochx.2021.100170

Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., Díaz, J. A., & Ragazzo-Sánchez, J. A. (2022). Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. Colloids and Interfaces, 6(4), 52. https://doi.org/10.3390/colloids6040052

Calderón-Chiu, C., Calderón-Santoyo, M., Herman-Lara, E., & Ragazzo-Sánchez, J. A. (2021). Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, techno-functional properties and antioxidant capacity. Food Hydrocolloids, 112, 106319. https://doi.org/10.1016/j.foodhyd.2020.106319

Collantes-Chávez-Costa, A., Alanis-Rodríguez, E., Yam-Uicab, O., López-Contreras, C., Sarmiento-Muñoz, T., & Tapia-Muñoz, J. L. (2019). Composition, structure and diversity of coastal vegetation in the northeastern of Cozumel, Mexico. Botanical Sciences, 97(2), 135–147. https://doi.org/10.17129/botsci.2044

Corzo‐Martínez, M., Villamiel, M., & Moreno, F. J. (2017). Impact of High‐intensity Ultrasound on Protein Structure and Functionality during Food Processing. In Ultrasound in Food Processing (pp. 417–436). Wiley. https://doi.org/10.1002/9781118964156.ch16

Du, H., Zhang, J., Wang, S., Manyande, A., & Wang, J. (2022). Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. LWT, 155, 112952. https://doi.org/10.1016/j.lwt.2021.112952

Flores‐Jiménez, N. T., Ulloa, J. A., Urías‐Silvas, J. E., & Hidalgo‐Millán, A. (2023). Modification of rheological properties of animal and vegetable proteins treated with high‐intensity ultrasound: A review. Food Frontiers, 4(2), 700–720. https://doi.org/10.1002/fft2.220

González-Muñoz, A., Valle, M., Aluko, R. E., Bazinet, L., & Enrione, J. (2022). Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. Food Science and Human Wellness, 11(6), 1650–1659. https://doi.org/10.1016/J.FSHW.2022.06.024

Hussain, M., Zhong, H., Hussain, K., Manzoor, M. F., Qayum, A., Liu, X., Xu, J., Hussain, A., Ahsan, H. M., & Guan, R. (2024). Emerging high intensity ultrasound for soymilk in boosting bioactivity, amino acids release, reducing anti-nutritional factors and allergenicity. Food Bioscience, 59, 104138. https://doi.org/10.1016/j.fbio.2024.104138

Jadhav, H. B., Das, M., Das, A., V, G., Choudhary, P., Annapure, U., & Alaskar, K. (2024). Enhancing the functionality of plant-based proteins with the application of ultrasound–A review. Measurement: Food, 13, 100139. https://doi.org/10.1016/j.meafoo.2024.100139

Justino, H. de F. M., dos Santos, I. F., de Souza, R. C. N., Sanches, E. A., Bezerra, J. de A., Lamarão, C. V., Pires, A. C. dos S., & Campelo, P. H. (2024). Exploring ultrasound‐assisted technique for enhancing techno‐functional properties of plant proteins: a comprehensive review. International Journal of Food Science & Technology, 59(1), 498–511. https://doi.org/10.1111/ijfs.16673

Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2012). Storage Stability of Protein Hydrolysate from Yellow Stripe Trevally ( Selaroides leptolepis ). International Journal of Food Properties, 15(5), 1042–1053. https://doi.org/10.1080/10942912.2010.513025

Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002

Rahman, M. M., Byanju, B., Grewell, D., & Lamsal, B. P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019. https://doi.org/10.1016/j.ultsonch.2020.105019

Rahman, M. M., & Lamsal, B. P. (2021). Ultrasound‐assisted extraction and modification of plant‐based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480. https://doi.org/10.1111/1541-4337.12709

Ramondo, A., Marulo, S., Sorrentino, A., Masi, P., & Di Pierro, P. (2024). Modification of Physicochemical and Functional Properties of Pumpkin Seeds Protein Isolate (PsPI) by High-Intensity Ultrasound: Effect of Treatment Time. ACS Food Science & Technology, 4(1), 40–48. https://doi.org/10.1021/acsfoodscitech.3c00253

Rawat, R., & Saini, C. S. (2023). Modification of sunnhemp (Crotalaria juncea) protein isolate by high intensity ultrasound: Impact on the molecular structure, amino acid composition and nutritional profiling. Food Bioscience, 56, 103100. https://doi.org/10.1016/j.fbio.2023.103100

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 29(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Segura Campos, M. R., Ruiz Ruiz, J., Chel-Guerrero, L., & Betancur Ancona, D. (2015). Coccoloba uvifera (L.) ( Polygonaceae ) Fruit: Phytochemical Screening and Potential Antioxidant Activity. Journal of Chemistry, 2015(1), 1–9. https://doi.org/10.1155/2015/534954

Sun, X., Abioye, R. O., Acquah, C., & Udenigwe, C. C. (2023). Application of Ultrasound Technology in Plant-Based Proteins: Improving Extraction, Physicochemical, Functional, and Nutritional Properties. In Green Protein Processing Technologies from Plants (pp. 265–289). Springer International Publishing. https://doi.org/10.1007/978-3-031-16968-7_11

Vera-Salgado, J., Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., López-García, U. M., & Ragazzo-Sánchez, J. A. (2022). Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. Colloids and Interfaces, 6(4), 50. https://doi.org/10.3390/colloids6040050

World Health Organization/Food and Agricultural Organization [WHO/FAO]. (2007).Report of a Joint WHO/FAO/UNU Expert Consultation 2007. WHO Technical Report Series No. 935. https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf

Xue, F., Zhu, C., Liu, F., Wang, S., Liu, H., & Li, C. (2018). Effects of high‐intensity ultrasound treatment on functional properties of plum ( Pruni domesticae semen ) seed protein isolate. Journal of the Science of Food and Agriculture, 98(15), 5690–5699. https://doi.org/10.1002/jsfa.9116

Yu, N., Jiang, C., Ning, F., Hu, Z., Shao, S., Zou, X., Meng, X., & Xiong, H. (2021). Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chemistry, 345, 128542. https://doi.org/10.1016/J.FOODCHEM.2020.128542

Zhao, R., Liu, X., Liu, W., Liu, Q., Zhang, L., & Hu, H. (2022). Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrasonics Sonochemistry, 85, 105969. https://doi.org/10.1016/j.ultsonch.2022.105969

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional