EN PRENSA. Síntesis de nanopartículas de oro y plata ancladas en óxido de grafeno. EN PRENSA
PDF

Palabras clave

Nanopartículas de plata
nanopartículas de oro
óxido de grafeno
síntesis verde

Métricas de PLUMX 

Resumen

Este trabajo presenta una serie de experimentos destinados al anclaje de nanopartículas de plata (Ag) y oro (Au) sobre óxido de grafeno (OG). En una primera etapa, se realizó la síntesis de nanopartículas coloidales utilizando el método de Turkevich, empleando citrato de sodio como agente reductor y estabilizador. Posteriormente, se implementó el anclaje de las nanopartículas al OG, el cual fue sintetizado mediante el método modificado de Hummers, que involucra la oxidación de grafito utilizando permanganato de potasio (KMnO4), nitrato de sodio (NaNO3) y ácido sulfúrico (H2SO4). Para el anclaje, se desarrollaron dos metodologías: (1) mezcla de una solución de nanopartículas de Au o Ag con óxido de grafeno, y (2) síntesis in-situ de las nanopartículas en una solución de OG. Las muestras obtenidas fueron caracterizadas mediante espectroscopia ultravioleta-visible (UV-Vis), microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión de alta resolución (HRTEM), dispersión dinámica de luz (DLS) y difracción de rayos X de polvos (XRD). Los resultados indican que ambos métodos son efectivos para el anclaje de nanopartículas, mostrando distribuciones homogéneas y buenas propiedades estructurales. Este estudio proporciona una base para el desarrollo de materiales funcionales basados en grafeno y nanopartículas metálicas, con potencial en aplicaciones catalíticas y tecnológicas.

https://doi.org/10.15741/revbio.12.e1878
PDF

Citas

Adams, F. C., & Barbante, C. (2013). Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 3-13. https://doi.org/10.1016/j.sab.2013.04.008

Badoni, A., & Prakash, J. (2024). Noble metal nanoparticles and graphene oxide based hybrid nanostructures for antibacterial applications: Recent advances, synergistic antibacterial activities, and mechanistic approaches. Micro and Nano Engineering, 22, 100239. https://doi.org/10.1016/j.mne.2024.100239

Bensaude-Vincent, B. (2016). Building multidisciplinary research fields: The cases of materials science, nanotechnology and synthetic biology. In The Local Configuration of New Research Fields: On Regional and National Diversity (pp. 45-60). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-22683-5_3

Coviello, V., Forrer, D., & Amendola, V. (2022). Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem, 23(21), e202200136. https://doi.org/10.1002/cphc.202200136

Darabdhara, G., Das, M. R., Singh, S. P., Rengan, A. K., Szunerits, S., & Boukherroub, R. (2019). Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Advances in colloid and interface science, 271, 101991. https://doi.org/10.1016/j.cis.2019.101991

Feynmann, R. P. (1960). There’s plenty of room at the bottom. Eng. Sci, 23(5), 22-36. http://www.zyvex.com/nanotech/feynman.html

Galiakhmetova, L. K., Kayumov, A. A., Katnov, V. E., Khelkhal, M. A., Mukhamatdinova, R. E., Trubitsina, S. A., ... & Vakhin, A. V. (2024). Thermal steam treatment effect of metallic sodium nanoparticles for high-carbon, low permeability Domanic rocks. Geoenergy Science and Engineering, 240, 213038. https://doi.org/10.1016/j.geoen.2024.213038

Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical reviews, 107(11), 4797-4862. https://doi.org/10.1021/cr0680282

Goncalves, G., Marques, P. A., Granadeiro, C. M., Nogueira, H. I., Singh, M. K., & Gracio, J. (2009). Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 21(20), 4796-4802. https://doi.org/10.1021/cm901052s

Karthik, P. S., Himaja, A. L., & Singh, S. P. (2014). Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon letters, 15(4), 219-237. https://doi.org/10.5714/CL.2014.15.4.219

Lin, T. N., Chih, K. H., Yuan, C. T., Shen, J. L., Lin, C. A. J., & Liu, W. R. (2015). Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale, 7(6), 2708-2715. https://doi.org/10.1039/C4NR05737F

Li, X., & Binnemans, K. (2021). Oxidative dissolution of metals in organic solvents. Chemical Reviews, 121(8), 4506-4530. https://doi.org/10.1021/acs.chemrev.0c00917

Majumder, P., & Gangopadhyay, R. (2022). Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC advances, 12(9), 5686-5719. https://doi.org/10.1039/D1RA06731A

Narayan, J., & Bezborah, K. (2024). Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC advances, 14(19), 13413-13444. https://doi.org/10.1039/D3RA07072G

Pang, J., Peng, S., Hou, C., Zhao, H., Fan, Y., Ye, C., ... & Cuniberti, G. (2023). Applications of graphene in five senses, nervous system, and artificial muscles. ACS sensors, 8(2), 482-514. https://doi.org/10.1021/acssensors.2c02790

Ramírez-Gonzalez, D., Cruz-Rivera, J. de J., Tiznado, H., Rodriguez, A. G., Guillen-Escamilla, I., & Zamudio-Ojeda, A. (2020). Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ. Advances in Nano Research, 9(1), 25–32. https://doi.org/10.12989/ANR.2020.9.1.025

Ray, S. C., Mishra, D. K., & Pong, W. F. (2024). Optimization of Magnetic Behaviors of Au-NP-Decorated MWCNTs and Reduced Graphene Oxide for Biomedical Applications. ACS omega, 9(38), 40067-40074. https://doi.org/10.1021/acsomega.4c05962

Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. https://doi.org/10.1016/j.enmm.2021.100428

Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and bionanotechnology (pp. 527-612). Academic Press. https://doi.org/10.1016/B978-0-12-814427-5.00015-9

Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004

Tang, X. Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., & Yu, Z. Z. (2013). Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon, 59, 93-99. https://doi.org/10.1016/j.carbon.2013.02.058

Tsai, W. Y., Lin, R., Murali, S., Zhang, L. L., McDonough, J. K., Ruoff, R. S., ... & Simon, P. (2013). Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from− 50 to 80 C. Nano Energy, 2(3), 403-411. https://doi.org/10.1016/j.nanoen.2012.11.006

Viana, M. M., Lima, M. C., Forsythe, J. C., Gangoli, V. S., Cho, M., Cheng, Y., ... & Caliman, V. (2015). Facile graphene oxide preparation by microwave-assisted acid method. Journal of the Brazilian Chemical Society, 26(5), 978-984. https://doi.org/10.5935/0103-5053.20150061

Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., ... & Yan, H. (2003). One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 15(5), 353-389. https://doi.org/10.1002/adma.200390087

Yin, P. T., Shah, S., Chhowalla, M., & Lee, K. B. (2015). Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chemical reviews, 115(7), 2483-2531. https://doi.org/10.1021/cr500537t

Yuan, Z., Xiao, X., Li, J., Zhao, Z., Yu, D., & Li, Q. (2018). Self‐assembled graphene‐based architectures and their applications. Advanced Science, 5(2), 1700626. https://doi.org/10.1002/advs.201700626

Zhao, M. Q., Zhang, Q., Tian, G. L., & Wei, F. (2014). Emerging double helical nanostructures. Nanoscale, 6(16), 9339-9354. https://doi.org/10.1039/C4NR00271G

Zhang, D., Zhang, W., Gu, J., Fan, T., Liu, Q., Su, H., & Zhu, S. (2015). Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 68, 67-96. https://doi.org/10.1016/j.pmatsci.2014.10.003

Zhen, Z., & Zhu, H. (2018). Structure and properties of graphene. In Graphene (pp. 1-12). Academic Press. https://doi.org/10.1016/B978-0-12-812651-6.00001-X

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional