Abstract
This work presents a series of experiments aimed at anchoring silver (Ag) and gold (Au) nanoparticles on graphene oxide (GO). In a first stage, the synthesis of colloidal nanoparticles was carried out using the Turkevich method, employing sodium citrate as reducing and stabilizing agent. Subsequently, the anchoring of the nanoparticles to the OG was implemented, which was synthesized using Hummers' method, involving the oxidation of graphite using potassium permanganate (KMnO4), sodium nitrate (NaNO3) and sulfuric acid (H2SO4). For anchoring, two methodologies were developed: (1) mixing of a solution of Au or Ag nanoparticles with graphene oxide, and (2) in-situ synthesis of the nanoparticles in an OG solution. The obtained samples were characterized by ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS) and powder X-ray diffraction (XRD). The results indicate that both methods are effective for nanoparticle anchoring, showing homogeneous distributions and good structural properties. This study provides a basis for the development of functional materials based on graphene and metal nanoparticles, with potential in catalytic and technological applications.
References
Adams, F. C., & Barbante, C. (2013). Nanoscience, nanotechnology and spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 3-13. https://doi.org/10.1016/j.sab.2013.04.008
Badoni, A., & Prakash, J. (2024). Noble metal nanoparticles and graphene oxide based hybrid nanostructures for antibacterial applications: Recent advances, synergistic antibacterial activities, and mechanistic approaches. Micro and Nano Engineering, 22, 100239. https://doi.org/10.1016/j.mne.2024.100239
Bensaude-Vincent, B. (2016). Building multidisciplinary research fields: The cases of materials science, nanotechnology and synthetic biology. In The Local Configuration of New Research Fields: On Regional and National Diversity (pp. 45-60). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-22683-5_3
Coviello, V., Forrer, D., & Amendola, V. (2022). Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem, 23(21), e202200136. https://doi.org/10.1002/cphc.202200136
Darabdhara, G., Das, M. R., Singh, S. P., Rengan, A. K., Szunerits, S., & Boukherroub, R. (2019). Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Advances in colloid and interface science, 271, 101991. https://doi.org/10.1016/j.cis.2019.101991
Feynmann, R. P. (1960). There’s plenty of room at the bottom. Eng. Sci, 23(5), 22-36. http://www.zyvex.com/nanotech/feynman.html
Galiakhmetova, L. K., Kayumov, A. A., Katnov, V. E., Khelkhal, M. A., Mukhamatdinova, R. E., Trubitsina, S. A., ... & Vakhin, A. V. (2024). Thermal steam treatment effect of metallic sodium nanoparticles for high-carbon, low permeability Domanic rocks. Geoenergy Science and Engineering, 240, 213038. https://doi.org/10.1016/j.geoen.2024.213038
Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical reviews, 107(11), 4797-4862. https://doi.org/10.1021/cr0680282
Goncalves, G., Marques, P. A., Granadeiro, C. M., Nogueira, H. I., Singh, M. K., & Gracio, J. (2009). Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 21(20), 4796-4802. https://doi.org/10.1021/cm901052s
Karthik, P. S., Himaja, A. L., & Singh, S. P. (2014). Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon letters, 15(4), 219-237. https://doi.org/10.5714/CL.2014.15.4.219
Lin, T. N., Chih, K. H., Yuan, C. T., Shen, J. L., Lin, C. A. J., & Liu, W. R. (2015). Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale, 7(6), 2708-2715. https://doi.org/10.1039/C4NR05737F
Li, X., & Binnemans, K. (2021). Oxidative dissolution of metals in organic solvents. Chemical Reviews, 121(8), 4506-4530. https://doi.org/10.1021/acs.chemrev.0c00917
Majumder, P., & Gangopadhyay, R. (2022). Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC advances, 12(9), 5686-5719. https://doi.org/10.1039/D1RA06731A
Narayan, J., & Bezborah, K. (2024). Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC advances, 14(19), 13413-13444. https://doi.org/10.1039/D3RA07072G
Pang, J., Peng, S., Hou, C., Zhao, H., Fan, Y., Ye, C., ... & Cuniberti, G. (2023). Applications of graphene in five senses, nervous system, and artificial muscles. ACS sensors, 8(2), 482-514. https://doi.org/10.1021/acssensors.2c02790
Ramírez-Gonzalez, D., Cruz-Rivera, J. de J., Tiznado, H., Rodriguez, A. G., Guillen-Escamilla, I., & Zamudio-Ojeda, A. (2020). Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ. Advances in Nano Research, 9(1), 25–32. https://doi.org/10.12989/ANR.2020.9.1.025
Ray, S. C., Mishra, D. K., & Pong, W. F. (2024). Optimization of Magnetic Behaviors of Au-NP-Decorated MWCNTs and Reduced Graphene Oxide for Biomedical Applications. ACS omega, 9(38), 40067-40074. https://doi.org/10.1021/acsomega.4c05962
Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428. https://doi.org/10.1016/j.enmm.2021.100428
Shnoudeh, A. J., Hamad, I., Abdo, R. W., Qadumii, L., Jaber, A. Y., Surchi, H. S., & Alkelany, S. Z. (2019). Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and bionanotechnology (pp. 527-612). Academic Press. https://doi.org/10.1016/B978-0-12-814427-5.00015-9
Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004
Tang, X. Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., & Yu, Z. Z. (2013). Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon, 59, 93-99. https://doi.org/10.1016/j.carbon.2013.02.058
Tsai, W. Y., Lin, R., Murali, S., Zhang, L. L., McDonough, J. K., Ruoff, R. S., ... & Simon, P. (2013). Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from− 50 to 80 C. Nano Energy, 2(3), 403-411. https://doi.org/10.1016/j.nanoen.2012.11.006
Viana, M. M., Lima, M. C., Forsythe, J. C., Gangoli, V. S., Cho, M., Cheng, Y., ... & Caliman, V. (2015). Facile graphene oxide preparation by microwave-assisted acid method. Journal of the Brazilian Chemical Society, 26(5), 978-984. https://doi.org/10.5935/0103-5053.20150061
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., ... & Yan, H. (2003). One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 15(5), 353-389. https://doi.org/10.1002/adma.200390087
Yin, P. T., Shah, S., Chhowalla, M., & Lee, K. B. (2015). Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chemical reviews, 115(7), 2483-2531. https://doi.org/10.1021/cr500537t
Yuan, Z., Xiao, X., Li, J., Zhao, Z., Yu, D., & Li, Q. (2018). Self‐assembled graphene‐based architectures and their applications. Advanced Science, 5(2), 1700626. https://doi.org/10.1002/advs.201700626
Zhao, M. Q., Zhang, Q., Tian, G. L., & Wei, F. (2014). Emerging double helical nanostructures. Nanoscale, 6(16), 9339-9354. https://doi.org/10.1039/C4NR00271G
Zhang, D., Zhang, W., Gu, J., Fan, T., Liu, Q., Su, H., & Zhu, S. (2015). Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication. Progress in Materials Science, 68, 67-96. https://doi.org/10.1016/j.pmatsci.2014.10.003
Zhen, Z., & Zhu, H. (2018). Structure and properties of graphene. In Graphene (pp. 1-12). Academic Press. https://doi.org/10.1016/B978-0-12-812651-6.00001-X

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.