EN PRENSA. Resistencia a antibióticos y los integrones en Escherichia coli aislada en la producción primaria de cárnicos de res y cerdo: una revisión sistemática. EN PRENSA
PDF

Palabras clave

Beta-lactámicos
intl-1
intl-2
resistance genes

Métricas de PLUMX 

Resumen

Escherichia coli es un patógeno de importancia en salud pública, por las enfermedades gastrointestinales que causa, se encuentra en distintos tipos de alimentos, la carne es un reservorio de E. coli multirresistente que se transmite al humano por el consumo de carne contaminada. además, es utilizada como un indicador para el monitoreo de la resistencia antimicrobiana (RAM) en la industria alimentaria. Por ello, en este estudió se realizó una revisión sistemática de artículos publicados del 2013 al 2024, siguiendo las guías PRISMA, fueron seleccionados 34 artículos para un análisis cuantitativo, sobre aspectos de la resistencia de E. coli en carne de res y cerdo. El análisis de los reportes evidenció resistencia para E. coli a antibióticos de las familias de b-lactámicos (38.4%), tetraciclinas (13.8%) y aminoglucósidos (12.7%). Mientras que, los genes con mayor frecuencia reportada fueron blaCTX-M (23.5%), blaTEM (15.0%), tet(A) (8.9%), tet(B) (6.2%) y aacC2 (5.6%). Finalmente, los arreglos de genes más frecuentes en los integrones tipo 1 fueron dfrA1-aadA1, dfrA17-aadA5 y dfrA12-aadA2. El presente estudio revela información relevante referente a la resistencia fenotípica y genotípica que se reporta para E. coli en carne de cerdo y de res, e indaga en la importancia que tienen los integrones tipo 1 para la propagación de genes de resistencia.

https://doi.org/10.15741/revbio.13.e1903
PDF

Citas

Abayneh, M., Tesfaw, G., Woldemichael, K., Yohannis, M., & Abdissa, A. (2019). Assessment of extended-spectrum β-lactamase (ESBLs) – producing Escherichia coli from minced meat of cattle and swab samples and hygienic status of meat retailer shops in Jimma town, Southwest Ethiopia. BMC Infectious Diseases, 19, Article 897. https://doi.org/10.1186/s12879-019-4554-6

Ahmed, A. M., & Shimamoto, T. (2015). Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. International Journal of Food Microbiology, 193, 68–73. https://doi.org/10.1016/j.ijfoodmicro.2014.10.014

Ahmed, H. A., Elsohaby, I., Elamin, A. M., El-Ghafar, A. E. A., Elsaid, G. A., Elbarbary, M., Mohsen, R. A., El Feky, T. M., & El Bayomi, R. M. (2023). Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiology, 23, Article 212. https://doi.org/10.1186/s12866-023-02948-0

Ambrose, S. J., & Hall, R. M. (2019). Novel trimethoprim resistance gene, dfrA35, in IncC plasmids from Australia. Journal of Antimicrobial Chemotherapy, 74(7), 1863–1866. https://doi.org/10.1093/jac/dkz148

Awosile, B., Eisnor, J., Saab, M. E., Heider, L., & McClure, J. T. (2021). Occurrence of extended-spectrum b-lactamase and ampc-producing Escherichia coli in retail meat products from the Maritime Provinces, Canada. Canadian Journal of Microbiology, 67(7), 537–547. https://doi.org/10.1139/cjm-2020-0442

Badi, S., Cremonesi, P., Abbassi, M. S., Ibrahim, C., Snoussi, M., Bignoli, G., Luini, M., Castiglioni, B., & Hassen, A. (2018). Antibiotic resistance phenotypes and virulence-associated genes in Escherichia coli isolated from animals and animal food products in Tunisia. FEMS Microbiology Letters, 365(10), 1–7. https://doi.org/10.1093/femsle/fny088

Barrios-Villa, E., Cortés-Cortés, G., Lozano Zarain, P., Romero-Romero, S., Lara Flores, N., Estepa, V., Somalo, S., Torres, C., & Rocha-Gracia, R. del C. (2018). Characterization of extended-spectrum and CMY-2 ß-lactamases, and associated virulence genes in Escherichia coli from food of animal origin in México. British Food Journal, 120(7), 1457–1473. https://doi.org/10.1108/BFJ-02-2018-0104

Belotindos, L. P., Tsunoda, R., Villanueva, M. A., Nakajima, C., Mingala, C. N., & Suzuki, Y. (2022). Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. Journal of Global Antimicrobial Resistance, 30, 38–46. https://doi.org/10.1016/j.jgar.2022.04.012

Bharadwaj, A., Rastogi, A., Pandey, S., Gupta, S., & Sohal, J. S. (2022). Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BioMed Research International, 2022, Article 5419874. https://doi.org/10.1155/2022/5419874

Bonnet, C., & Coinon, M. (2024). Environmental co-benefits of health policies to reduce meat consumption: A narrative review. Health Policy, 143, Article 105017. https://doi.org/10.1016/j.healthpol.2024.105017

Cameron, A., Klima, C. L., Ha, R., Gruninger, R. J., Zaheer, R., & McAllister, T. A. (2018). A novel aadA aminoglycoside resistance gene in bovine and porcine pathogens. Applied and Environmental Microbiology, 3(1), 1–6. https://doi.org/10.1128/mSphere.00568-17

Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum b-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3), 1–21. https://doi.org/10.1093/jacamr/dlab092

Centers for Disease Control and Prevention [CDC]. (2019). Antibiotic resistance threats in the United States 2019. Centers for Disease Control and Prevention, National Center for Emerging Zoonotic and Infectious Diseases (U.S.). Division of Healthcare Quality Promotion. Antibiotic Resistance Coordination and Strategy Unit. https://doi.org/10.15620/cdc:82532

Cebeci, T. (2022). Prevalence, characterization, and PFGE profiles of multidrug-resistant, extended-spectrum β-lactamase-producing Escherichia coli strains in animalderived foods from public markets in eastern Turkey. Journal of the Hellenic Veterinary Medical Society, 73(3), 4633–4644. https://doi.org/10.12681/jhvms.29251

Chen, P., Jiang, J., Zhang, S., Wang, X., & Guo, X. (2023). Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole. Chemosphere, 325, Article 138410. https://doi.org/10.1016/j.chemosphere.2023.138410

Clemente, L., Leão, C., Moura, L., Albuquerque, T., & Amaro, A. (2021). Prevalence and characterization of ESBL/AmpC producing Escherichia coli from fresh meat in Portugal. Antibiotics, 10(11), Article 1333. https://doi.org/10.3390/antibiotics10111333

De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 21(14), Article 5090. https://doi.org/10.3390/ijms21145090

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14, Article 45. https://doi.org/10.1186/s12941-015-0100-6

Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z.-C., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B., & Swarbrick, J. D. (2018). 8-Mercaptoguanine derivatives as inhibitors of dihydropteroate synthase. Chemistry a European Journal, 24(8), 1922–1930. https://doi.org/10.1002/chem.201704730

Dias, W., Pereira, H., de Faria, R., Cardoso, Á., Cristiano, E., Cayô, R., Gales, A., Piantino, A. J., & Andrade, L. (2020). In vitro and in vivo persistence of IncN plasmids carrying qnr genes in uropathogenic Escherichia coli isolates. Journal of Global Antimicrobial Resistance, 22, 806–810. https://doi.org/10.1016/j.jgar.2020.07.006

Diyantoro, & Wardhana, D. K. (2019). Risk factors for bacterial contamination of bovine meat during slaughter in ten Indonesian abattoirs. Veterinary Medicine International, 2019, Article 2707064. https://doi.org/10.1155/2019/2707064

Duijkeren, E. Van, Schink, A., Roberts, M. C., Wang, Y., & Schwarz, S. (2017). Mechanisms of bacterial resistance to antimicrobial agents. Microbiology Spectrum, 6(2), 1–31. https://doi.org/10.1128/microbiolspec.arba-0019-2017

Enciso-Martínez, Y., González-Aguilar, G. A., Martínez-Téllez, M. A., González-Pérez, C. J., Valencia-Rivera, D. E., Barrios-Villa, E., & Ayala-Zavala, J. F. (2022). Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. International Journal of Food Microbiology, 374, Article 109736. https://doi.org/10.1016/j.ijfoodmicro.2022.109736

Endale, H., Mathewos, M., & Abdeta, D. (2023). Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective: A Review. Infection and Drug Resistance, 2023(16), 7515–7545. https://doi.org/10.2147/IDR.S428837

Fang, J., Shen, Y., Qu, D., & Han, J. (2019). Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control, 95, 215–222. https://doi.org/10.1016/j.foodcont.2018.08.003

Fegan, N., & Jenson, I. (2018). The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management? Meat Science, 144, 22–29. https://doi.org/10.1016/j.meatsci.2018.04.018

Fontana, C., Patrone, V., Lopez, C. M., Morelli, L., & Rebecchi, A. (2021). Incidence of tetracycline and erythromycin resistance in meat-associated bacteria: Impact of different livestock management strategies. Microorganisms, 9(10), Article 2111. https://doi.org/10.3390/microorganisms9102111

Foudraine, D. E., Strepis, N., Stingl, C., Kate, M. T., Verbon, A., Klaassen, C. H. W., Goessens, W. H. F., Luider, T. M., & Dekker, L. J. M. (2021). Exploring antimicrobial resistance to beta‑lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Scientific Reports, 11, Article 12472. https://doi.org/10.1038/s41598-021-91905-w

Fuentes, R., Talavera, M., Vázquez, J., Soriano, E., & Gutiérrez, A. (2013). Presencia de integrones clase I en Escherichia coli aislada de productos cárnicos en plantas Tipo Inspección Federal (TIF) en el Estado de México. Veterinaria Mexico, 44(1), 23–30. https://www.scielo.org.mx/pdf/vetmex/v44n1/v44n1a3.pdf

Ghaly, T. M., Chow, L., Asher, A. J., Waldron, L. S., & Gillings, M. R. (2017). Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE, 12(6), Article e0179169. https://doi.org/10.1371/journal.pone.0179169

Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2020). The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 28(6), 455–464. https://doi.org/10.1016/j.tim.2019.12.002

Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399), 1–9. https://doi.org/10.1126/science.aam5324

Gomes, T., Elias, W., Scaletsky, I., Guth, B., Rodrigues, J., Piazza, R., Ferreira, L., & Martinez, M. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47(1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015

Grossman, T. H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6, Article a025387. https://doi.org/10.1101/cshperspect.a025387

Guragain, M., Schmidt, J. W., Bagi, L. K., Paoli, G. C., Kalchayanand, N., & Bosilevac, J. M. (2024). Antibiotic Resistance and Disinfectant Resistance Among Escherichia coli Isolated During Red Meat Production. Journal of Food Protection, 87(6), Article 100288. https://doi.org/10.1016/j.jfp.2024.100288

He, J., Qiao, W., An, Q., Yang, T., & Luo, Y. (2020). Dihydrofolate reductase inhibitors for use as antimicrobial agents. European Journal of Medicinal Chemistry, 195, Article 112268. https://doi.org/10.1016/j.ejmech.2020.112268

Hemeg, H. A. (2018). Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi Journal of Biological Sciences, 25(5), 928–931. https://doi.org/10.1016/j.sjbs.2018.01.016

Huang, L., Yuan, H., Liu, M.-F., Zhao, X.-X., Wang, M.-S., Jia, R.-Y., Chen, S., Sun, K.-F., Yang, Q., Wu, Y., Chen, X.-Y., Cheng, A.-C., & Zhu, D.-K. (2017). Type B Chloramphenicol acetyltransferases are responsible for chloramphenicol resistance in Riemerella anatipestifer, China. Frontiers in Microbiology, 8(297), 1–9. https://doi.org/10.3389/fmicb.2017.00297

Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J. P. A., Straus, S., Thorlund, K., Jansen, J. P., Mulrow, C., Catala-Lopez, F., Gotzsche, P. C., Dickersin, K., Boutron, I., Altman, D. G., & Moher, D. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 162(11), 777–784. https://doi.org/10.7326/M14-2385

İnat, G., Sırıken, B., Çiftci, A., Erol, İ., Başkan, C., & Yıldırım, T. (2023). Molecular characterization of extended-spectrum β-lactamases-producing Enterobacteriaceae species in ground beef and chicken meat. International Journal of Food Microbiology, 398, Article 110228. https://doi.org/10.1016/j.ijfoodmicro.2023.110228

Jahantigh, M., Samadi, K., Dizaji, R. E., & Salari, S. (2020). Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Veterinary Research, 16, Article 267. https://doi.org/10.1186/s12917-020-02488-z

Jiang, Y., Peng, K., Wang, Q., Wang, M., Li, R., & Wang, Z. (2023). Novel trimethoprim resistance gene dfrA49 identified in Riemerella anatipestifer from China. Microbiology Spectrum, 11(2), 1–10. https://doi.org/10.1128/spectrum.04747-22

Jiménez, R., Gudiño, L., Aguilar, J., & Loeza, P. (2017). Caracterización molecular de Escherichia coli resistente a antibióticos aislada de mastitis bovina en Michoacán, México. Revista Mexicana de Ciencias Pecuarias, 8(4), 387–396. https://doi.org/10.22319/rmcp.v8i4.4251

Kallau, N. H. G., Wibawan, I. W. T., Lukman, D. W., & Sudarwanto, M. B. (2018). Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. Journal of Advanced Veterinary Research, 5(4), 388–396. http://doi.org/10.5455/javar.2018.e289

Kanokudom, S., Assawakongkarat, T., Akeda, Y., Ratthawongjirakul, P., Chuanchuen, R., & Chaichanawongsaroj, N. (2021). Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE, 16(3), Article e0248536. https://doi.org/10.1371/journal.pone.0248536

Kardjadj, M., & Luka, D. P. (2016). Current situation of milk and red meat industry in Algeria. Journal of Nutrition & Food Sciences, 6(4), 1–4. https://www.longdom.org/open-access/current-situation-of-milk-and-red-meat-industry-in-algeria-2155-9600-1000516.pdf

Kaur, K., Singh, S., & Kaur, R. (2024). Impact of antibiotic usage in food-producing animals on food safety and possible antibiotic alternatives. The Microbe, 4, Article 100097. https://doi.org/10.1016/j.microb.2024.100097

Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51, 167–176. https://doi.org/10.1016/j.ijantimicag.2017.10.004

Khanal, P. (2024). Use of land-based and aquatic alternative feed resources to establish a circular economy within livestock production. Journal of Agriculture and Food Research, 16, Article 101087. https://doi.org/10.1016/j.jafr.2024.101087

Kim, J., & Ahn, J. (2022). Emergence and spread of antibiotic‑resistant foodborne pathogens from farm to table. Food Science and Biotechnology, 31(12), 1481–1499. https://doi.org/10.1007/s10068-022-01157-1

Kim, Y.-J., Moon, J.-S., Oh, D.-H., Chon, J.-W., Song, B.-R., Lim, J.-S., Heo, E.-J., Park, H.-J., Wee, S.-H., & Sung, K. (2018). Genotypic characterization of ESBL-producing E. coli from imported meat in South Korea. Food Research International, 107, 158–164. https://doi.org/10.1016/j.foodres.2017.12.023

Kneis, D., Lemay-St-Denis, C., Cellier-Goetghebeur, S., Elena, A. X., Berendonk, T. U., Pelletier, J. N., & Heß, S. (2023). Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the dfrB gene. The ISME Journal, 17(9), 1455–1466. https://doi.org/10.1038/s41396-023-01460-7

Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: an overview. Cold Spring Harb Perspective in Medecine, 6(6), Article a027029. https://doi.org/10.1101/cshperspect.a027029

Krizman, M., Avgustin, J. A., Zdovc, I., Golob, M., Trkov, M., Ciglenecki, U. J., Biasizzo, M., & Kirbis, A. (2017). Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamases and other Escherichia coli isolated from food of animal origin and human intestinal isolates. Journal of Food Protection, 80(1), 113–120. https://doi.org/10.4315/0362-028X.JFP-16-214

La Plante, K. L., Dhand, A., Wright, K., & Lauterio, M. (2022). Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Annals of Medicine, 54(1), 1686–1700. https://doi.org/10.1080/07853890.2022.2085881

Li, T., Wang, Z., Guo, J., de la Fuente-Nunez, C., Wang, J., Han, B., Tao, H., Liu, J., & Wang, X. (2023). Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Science of the Total Environment, 860, Article 160461. https://doi.org/10.1016/j.scitotenv.2022.160461

Liu, M., Liu, J., Ma, J., Li, W., Zhao, X., Jia, W., & Li, S. (2022). Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from class 1 Integrons in Carbapenem-resistant Escherichia coli strains. Microbial Pathogenesis, 170, Article 105669. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105669

Liu, Z., Zhang, Z., Yan, H., Li, J., & Shi, L. (2015). Isolation and molecular characterization of multidrug-resistant Enterobacteriaceae strains from pork and environmental samples in Xiamen, China. Journal of Food Protection, 78(1), 78–88. https://doi.org/10.4315/0362-028X.JFP-14-172

Machuca, J., de Alba, P. D., Recacha, E., Pascual, Á., & Rodriguez-Martinez, J. M. (2017). Cytotoxic effect associated with overexpression of QNR proteins in Escherichia coli. Microbial Drug Resistance, 23(7), 822–825. https://doi.org/10.1089/mdr.2016.0245

Mehdi, K., Vadod, R., Nordahr, R., & Mohammad, A. (2020). Genotypic and phenotypic assessment of antibiotic resistance and recognition of virulence factors in Escherichia coli O157 serogroup isolated from hamburger. Egyptian Journal of Veterinary Sciences, 51(2), 191-201. https://doi.org/10.21608/ejvs.2020.17668.1101

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online), 339, Article b2535. https://doi.org/10.1136/bmj.b2535

Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M., & El-Adawy, H. (2017). Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens, 9, Article 57. https://doi.org/10.1186/s13099-017-0206-9

Nguyen, D. P., Nguyen, T. A. D., Le, T. H., Tran, N. M. D., Ngo, T. P., Dang, V. C., Kawai, T., Kanki, M., Kawahara, R., Jinnai, M., Yonogi, S., Hirai, Y., Yamamoto, Y., & Kumeda, Y. (2016). Dissemination of Extended-Spectrum β -Lactamase- and AmpC β -Lactamase-Producing Escherichia coli within the Food Distribution System of Ho Chi Minh City, Vietnam. BioMed Research International, 2016, Article 8182096. https://doi.org/10.1155/2016/8182096

Niyonzima, E., Ongol, M. P., Kimonyo, A., & Sindic, M. (2015). Risk factors and control measures for bacterial contamination in the bovine meat chain: a review on Salmonella and pathogenic E. coli. Journal of Food Research, 4(5), 98–121. https://doi.org/10.5539/jfr.v4n5p98

OECD. (2024). Meat consumption. Meat Consumption Beef and Veal, Pork Meat, Kilograms/Capita - Retail Weight, 2023. Organisation for Economic Co-operation and Development. https://www.oecd.org/en/data/indicators/meat-consumption.html?oecdcontrol-106b3c3fe2-var3=2023&oecdcontrol-523be2d55c-var6=CPC_EX_BV%7CCPC_EX_PK&oecdcontrol-57c3acb58c-var1=USA%7CCHN%7CSAU%7CTHA&oecdcontrol-c42fc1f268-var8=FO_PC

Ojdana, D., Sienko, A., Sacha, P., Majewski, P., Wieczorek, P., Wieczorek, A., & Tryniszewska, E. (2018). Genetic basis of enzymatic resistance of E. coli to aminoglycosides. Advances in Medical Sciences, 63(1) 9–13. https://doi.org/10.1016/j.advms.2017.05.004

Okubo, T., Ae, R., Noda, J., Iizuka, Y., Usui, M., & Tamura, Y. (2019). Resistance detection of the sul2 – strA – strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. Journal of Global Antimicrobial Resistance, 17, 72–78. https://doi.org/10.1016/j.jgar.2018.11.005

Okubo, T., Yossapol, M., Ikushima, S., Kakooza, S., Wampande, E. M., Asai, T., Tsuchida, S., Ohya, K., Maruyama, F., Kabasa, J. D., & Ushida, K. (2020). Isolation and Characterization of Antimicrobial-Resistant Escherichia coli from Retail Meats from Roadside Butcheries in Uganda. Foodborne Pathogens and Disease, 17(11), 666–671. https://doi.org/10.1089/fpd.2020.2796

Ortega-Balleza, J. L., Requena-Castro, R., Cruz-Hernández, M. A., Martínez-Vázquez, A. V., Castro-Escarpulli, G., & Bocanegra-García, V. (2024). Resistencia a tetraciclinas en Escherichia coli aislada de aguas superficiales y residuales de Tamaulipas, México. Revista Internacional de Contaminación Ambiental, 40, 193–202. https://doi.org/10.20937/RICA.54492

Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile Genetic Elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), Article e00088-17. https://doi.org/10.1128/cmr.00088-17

Pehlivanlar, S., Aslantas, Ö., Sebnem, E., & Kürekci, C. (2015). Prevalence of β -Lactamase Producing Escherichia coli from Retail Meat in Turkey. Journal of Food Science, 80(9), M2023–M2029. https://doi.org/10.1111/1750-3841.12984

Poey, M. E., Azpiroz, M. F., & Laviña, M. (2019). On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli. Microbial Pathogenesis, 135, Article 103611. https://doi.org/10.1016/j.micpath.2019.103611

Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4), 1–27. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Pungpian, C., Sinwat, N., Angkititrakul, S., Prathan, R., & Chuanchuen, R. (2021). Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microbial Drug Resistance, 27(4), 571–584. https://doi.org/10.1089/mdr.2019.0438

Rani, Z. T., Mhlongo, L. C., & Hugo, A. (2023). Microbial profiles of meat at different stages of the distribution chain from the abattoir to retail outlets. International Journal of Environmental Research and Public Health, 20(3), Article 1986. https://doi.org/10.3390/ijerph20031986

Rebbah, N., Messai, Y., Chatre, P., Haenni, M., Madec, J., & Bakour, R. (2017). Diversity of CTX-M Extended-Spectrum b-Lactamases in Escherichia coli Isolates from Retail Raw Ground Beef: First Report of CTX-M-24 and CTX-M-32 in Algeria. Microbial Drug Resistence, 24(7): 896–908. https://doi.org/10.1089/mdr.2017.0171

Reyes-Rodríguez, N. E., Barba-León, J., Navarro-Ocaña, A., Vega-Sánchez, V., Gómez, F. R., Talavera-González, J. M., & Talavera-Rojas, M. (2020). Serotypes and Stx2 subtyping of Shiga toxin producing Escherichia coli isolates from cattle carcasses and feces. Revista Mexicana De Ciencias Pecuarias, 11(4), 1030–1044. https://doi.org/10.22319/RMCP.V11I4.5049

Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Roberts, M. C., & Schwarz, S. (2016). Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. Journal of Environmental Quality, 45(2), 576–592. https://doi.org/10.2134/jeq2015.04.0207

Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B., Mevius, D. J., & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73(5), 1121–1137. https://doi.org/10.1093/jac/dkx488

Sabala, R. F., Usui, M., Tamura, Y., Abd-Elghany, S. M., Sallam, K. I., & Elgazzar, M. M. (2021). Prevalence of colistin-resistant Escherichia coli harbouring mcr-1 in raw beef and ready-to-eat beef products in Egypt. Food Control, 119, Article 107436. https://doi.org/10.1016/j.foodcont.2020.107436

Saliu, E., Vahjen, W., & Zentek, J. (2017). Types and prevalence of extended – spectrum beta – lactamase producing Enterobacteriaceae in poultry. Animal Health Research Reviews, 18(1), 46–57. https://doi.org/10.1017/S1466252317000020

Sánchez, F., Fuenzalida, V., Ramos, R., Escobar, B., Neira, V., Borie, C., Lapierre, L., López, P., Venegas, L., Dettleff, P., Johnson, T., Fuentes-Castillo, D., Lincopan, N., & Galarce, N. (2021). Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses and Public Health, 68(3), 226–238. https://doi.org/10.1111/zph.12818

Shin, S. W., Shin, M. K., Jung, M., Belaynehe, K. M., & Yoo, H. S. (2015). Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Applied and Environmental Microbiology, 81(16), 5560–5566. https://doi.org/10.1128/AEM.01511-15

Singh, T., Dar, S. A., Singh, S., Shekhar, C., Wani, S., Akhter, N., Bashir, N., Haque, S., Ahmad, A., & Das, S. (2021). Integron mediated antimicrobial resistance in diarrheagenic Escherichia coli in children: in vitro and in silico analysis. Microbial Pathogenesis, 150, Article 104680. https://doi.org/10.1016/j.micpath.2020.104680

Skočková, A., Koláčková, I., Bogdanovičová, K., & Karpíšková, R. (2015). Characteristic and antimicrobial resistance in Escherichia coli from retail meats purchased in the Czech Republic. Food Control, 47, 401–406. https://doi.org/10.1016/j.foodcont.2014.07.034

Soepranianondo, K., Wardhana, D. K., Budiarto, & Diyantoro. (2019). Analysis of bacterial contamination and antibiotic residue of beef meat from city slaughterhouses in East Java Province, Indonesia. Veterinary World, 12(2), 243–248. https://doi.org/10.14202/vetworld.2019.243-248

Srichumporn, W., Chaisowwong, W., Intanon, M., & Na-Lampang, K. (2022). Extended-spectrum beta-lactamase-producing Escherichia coli from pork in Muang district, Chiang Mai Province, Thailand. Veterinary World, 15(12), 2903–2909. https://doi.org/10.14202/vetworld.2022.2903-2909

Sun, H., Wan, Y., Du, P., Liu, D., Li, R., Zhang, P., Wu, Y., Fanning, S., Wang, Y., & Bai, L. (2021). Investigation of tigecycline resistant Escherichia coli from raw meat reveals potential transmission among food-producing animals. Food Control, 121, Article 107633. https://doi.org/10.1016/j.foodcont.2020.107633

Tadesse, D. A., Li, C., Mukherjee, S., Hsu, C. H., Bodeis Jones, S., Gaines, S. A., Kabera, C., Loneragan, G. H., Torrence, M., Harhay, D. M., McDermott, P. F., & Zhao, S. (2018). Whole-genome sequence analysis of CTX-M containing Escherichia coli isolates from retail meats and cattle in the United States. Microbial Drug Resistance, 24(7), 939–948. https://doi.org/10.1089/mdr.2018.0206

Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β -Lactamases and β -Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, 431(18), 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002

Venkatesan, M., Fruci, M., Verellen, L. A., Skarina, T., Mesa, N., Flick, R., Pham, C., Mahadevan, R., Stogios, P. J., & Savchenko, A. (2023). Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nature Communications, 14, Article 4031. https://doi.org/10.1038/s41467-023-39778-7

Vikram, A., Miller, E., Arthur, T. M., Bosilevac, J. M., Wheeler, T. L., & Schmidt, J. W. (2018). Similar levels of antimicrobial resistance in U.S. food service ground beef products with and without a ‘“raised without antibiotics”’ claim. Journal of Food Protection, 81(12), 2007–2018. https://doi.org/10.4315/0362-028X.JFP-18-299

Vikram, A., Miller, E., Arthur, T. M., Bosilevac, J. M., Wheeler, T. L., & Schmidt, J. W. (2019). Food service pork chops from three U.S. Regions harbor similar levels of antimicrobial resistance regardless of antibiotic use claims. Journal of Food Protection, 82(10), 1667–1676. https://doi.org/10.4315/0362-028X.JFP-19-139

Vogt, D., Overesch, G., Endimiani, A., Collaud, A., Thomann, A., & Perreten, V. (2014). Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microbial Drug Resistance, 20(5), 485–494. https://doi.org/10.1089/mdr.2013.0210

Wan, M. T., & Chou, C. C. (2015). Class 1 integrons and the antiseptic resistance gene (qacEΔ1) in municipal and swine slaughterhouse wastewater treatment plants and wastewater-associated methicillin-resistant Staphylococcus aureus. International Journal of Environmental Research and Public Health, 12(6), 6249–6260. https://doi.org/10.3390/ijerph120606249

Wang, Q., Lei, C., Cheng, H., Yang, X., Huang, Z., Chen, X., Ju, Z., Zhang, H., & Wang, H. (2022). Widespread dissemination of plasmid-mediated tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. Microbiology Spectrum, 10(5), 1–13. https://doi.org/10.1128/spectrum.01615-22

Wang, W., Wang, L., Su, J., & Xu, Z. (2020). Antibiotic Susceptibility, Biofilm-Forming Ability, and Incidence of Class 1 Integron of Salmonella spp., Escherichia coli, and Staphylococcus aureus Isolated from Various Foods in a School Canteen in China. Foodborne Pathogens and Disease, 17(4), 269–275. https://doi.org/10.1089/fpd.2019.2694

Warmate, D., & Onarinde, B. A. (2023). Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. International Journal of Food Microbiology, 398, Article 110240. https://doi.org/10.1016/j.ijfoodmicro.2023.110240

Xedzro, C., Kimura, T., Shimamoto, T. T., Ahmed, A. M., & Shimamoto, T. T. (2023). Comparative molecular profiling of antimicrobial resistance and phylogenetic characterization of multidrug-resistant Escherichia coli isolated from meat sources in 2009 and 2021 in Japan. International Journal of Food Microbiology, 391–393, Article 110146. https://doi.org/10.1016/j.ijfoodmicro.2023.110146

Xu, X., Cui, S., Zhang, F., Luo, Y., Gu, Y., Yang, B., Li, F., Chen, Q., Zhou, G., Wang, Y., Pang, L., & Lin, L. (2014). Prevalence and characterization of cefotaxime and ciprofloxacin co-resistant Escherichia coli isolates in retail chicken carcasses and ground pork, China. Microbial Drug Resistance, 20(1), 73–81. https://doi.org/10.1089/mdr.2012.0224

Zárate, S. G., De la Cruz, M. L., Benito-Arenas, R., Revuelta, J., Santana, A. G., & Bastida, A. (2018). Overcoming aminoglycoside enzymatic resistance: design of novel antibiotics and inhibitors. Molecules, 23(2) Article 284. https://doi.org/10.3390/molecules23020284

Zhang, S., Abbas, M., Rehman, M. U., Huang, Y., Zhou, R., Gong, S., Yang, H., Chen, S., Wang, M., & Cheng, A. (2020). Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Environmental Pollution, 266(2), Article 115260. https://doi.org/10.1016/j.envpol.2020.115260

Zhang, S., Huang, Y., Chen, M., Yang, G., Zhang, J., Wu, Q., Wang, J., Ding, Y., Ye, Q., Lei, T., Su, Y., Pang, R., Yang, R., & Zhang, Y. (2022). Characterization of Escherichia coli O157:non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. International Journal of Food Microbiology, 378, Article 109805. https://doi.org/10.1016/j.ijfoodmicro.2022.109805

Zhong, Y., Guo, S., Seow, K. L. G., Ming, G. O. H., & Schlundt, J. (2021). Characterization of extended-spectrum Beta-lactamase-producing Escherichia coli isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. International Journal of Environmental Research and Public Health, 18(3) Article 937. https://doi.org/10.3390/ijerph18030937

Zhou, J., Chen, Y., Li, W., Qu, J., Chen, T., Wang, Y., & Geng, N. (2023). Deciphering the microbial community tolerance mechanism and alteration of antibiotic resistance genes during chloramphenicol wastewater treatment. International Biodeterioration & Biodegradation, 178, Article 105546. https://doi.org/10.1016/j.ibiod.2022.105546

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional