Abstract
Escherichia coli is a pathogen of public health concern due to the gastrointestinal diseases it causes. It is present in various food types, with meat serving as a reservoir of multidrug-resistant E. coli that can be transmitted to humans through the consumption of contaminated meat. Additionally, it is used as an indicator to monitor antimicrobial resistance (AMR) in the food industry. Therefore, this study conducted a systematic review of articles published between 2013 and 2024, following the PRISMA guidelines. Thirty-four articles were selected for a quantitative analysis of E. coli resistance in beef and pork. The report analysis showed resistance to antibiotics from the β-lactam (38.4%), tetracycline (13.8 %), and aminoglycoside (12.7 %) families. Moreover, the most frequently occurring resistance genes were blaCTX-M (23.5 %), blaTEM (15.0 %), tet(A) (8.9 %), tet(B) (6.2 %), and aacC2 (5.6 %). Finally, the most common gene arrangements in type 1 integrons were dfrA1-aadA1, dfrA17-aadA5, and dfrA12-aadA2. This study provides valuable information about the phenotypic and genotypic resistance reported in E. coli from pork and beef, and also examines the role of type 1 integrons in the spread of resistance genes.
References
Abayneh, M., Tesfaw, G., Woldemichael, K., Yohannis, M., & Abdissa, A. (2019). Assessment of extended-spectrum β-lactamase (ESBLs) – producing Escherichia coli from minced meat of cattle and swab samples and hygienic status of meat retailer shops in Jimma town, Southwest Ethiopia. BMC Infectious Diseases, 19, Article 897. https://doi.org/10.1186/s12879-019-4554-6
Ahmed, A. M., & Shimamoto, T. (2015). Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. International Journal of Food Microbiology, 193, 68–73. https://doi.org/10.1016/j.ijfoodmicro.2014.10.014
Ahmed, H. A., Elsohaby, I., Elamin, A. M., El-Ghafar, A. E. A., Elsaid, G. A., Elbarbary, M., Mohsen, R. A., El Feky, T. M., & El Bayomi, R. M. (2023). Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiology, 23, Article 212. https://doi.org/10.1186/s12866-023-02948-0
Ambrose, S. J., & Hall, R. M. (2019). Novel trimethoprim resistance gene, dfrA35, in IncC plasmids from Australia. Journal of Antimicrobial Chemotherapy, 74(7), 1863–1866. https://doi.org/10.1093/jac/dkz148
Awosile, B., Eisnor, J., Saab, M. E., Heider, L., & McClure, J. T. (2021). Occurrence of extended-spectrum b-lactamase and ampc-producing Escherichia coli in retail meat products from the Maritime Provinces, Canada. Canadian Journal of Microbiology, 67(7), 537–547. https://doi.org/10.1139/cjm-2020-0442
Badi, S., Cremonesi, P., Abbassi, M. S., Ibrahim, C., Snoussi, M., Bignoli, G., Luini, M., Castiglioni, B., & Hassen, A. (2018). Antibiotic resistance phenotypes and virulence-associated genes in Escherichia coli isolated from animals and animal food products in Tunisia. FEMS Microbiology Letters, 365(10), 1–7. https://doi.org/10.1093/femsle/fny088
Barrios-Villa, E., Cortés-Cortés, G., Lozano Zarain, P., Romero-Romero, S., Lara Flores, N., Estepa, V., Somalo, S., Torres, C., & Rocha-Gracia, R. del C. (2018). Characterization of extended-spectrum and CMY-2 ß-lactamases, and associated virulence genes in Escherichia coli from food of animal origin in México. British Food Journal, 120(7), 1457–1473. https://doi.org/10.1108/BFJ-02-2018-0104
Belotindos, L. P., Tsunoda, R., Villanueva, M. A., Nakajima, C., Mingala, C. N., & Suzuki, Y. (2022). Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. Journal of Global Antimicrobial Resistance, 30, 38–46. https://doi.org/10.1016/j.jgar.2022.04.012
Bharadwaj, A., Rastogi, A., Pandey, S., Gupta, S., & Sohal, J. S. (2022). Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BioMed Research International, 2022, Article 5419874. https://doi.org/10.1155/2022/5419874
Bonnet, C., & Coinon, M. (2024). Environmental co-benefits of health policies to reduce meat consumption: A narrative review. Health Policy, 143, Article 105017. https://doi.org/10.1016/j.healthpol.2024.105017
Cameron, A., Klima, C. L., Ha, R., Gruninger, R. J., Zaheer, R., & McAllister, T. A. (2018). A novel aadA aminoglycoside resistance gene in bovine and porcine pathogens. Applied and Environmental Microbiology, 3(1), 1–6. https://doi.org/10.1128/mSphere.00568-17
Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum b-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3), 1–21. https://doi.org/10.1093/jacamr/dlab092
Centers for Disease Control and Prevention [CDC]. (2019). Antibiotic resistance threats in the United States 2019. Centers for Disease Control and Prevention, National Center for Emerging Zoonotic and Infectious Diseases (U.S.). Division of Healthcare Quality Promotion. Antibiotic Resistance Coordination and Strategy Unit. https://doi.org/10.15620/cdc:82532
Cebeci, T. (2022). Prevalence, characterization, and PFGE profiles of multidrug-resistant, extended-spectrum β-lactamase-producing Escherichia coli strains in animalderived foods from public markets in eastern Turkey. Journal of the Hellenic Veterinary Medical Society, 73(3), 4633–4644. https://doi.org/10.12681/jhvms.29251
Chen, P., Jiang, J., Zhang, S., Wang, X., & Guo, X. (2023). Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole. Chemosphere, 325, Article 138410. https://doi.org/10.1016/j.chemosphere.2023.138410
Clemente, L., Leão, C., Moura, L., Albuquerque, T., & Amaro, A. (2021). Prevalence and characterization of ESBL/AmpC producing Escherichia coli from fresh meat in Portugal. Antibiotics, 10(11), Article 1333. https://doi.org/10.3390/antibiotics10111333
De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International Journal of Molecular Sciences, 21(14), Article 5090. https://doi.org/10.3390/ijms21145090
Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14, Article 45. https://doi.org/10.1186/s12941-015-0100-6
Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z.-C., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B., & Swarbrick, J. D. (2018). 8-Mercaptoguanine derivatives as inhibitors of dihydropteroate synthase. Chemistry a European Journal, 24(8), 1922–1930. https://doi.org/10.1002/chem.201704730
Dias, W., Pereira, H., de Faria, R., Cardoso, Á., Cristiano, E., Cayô, R., Gales, A., Piantino, A. J., & Andrade, L. (2020). In vitro and in vivo persistence of IncN plasmids carrying qnr genes in uropathogenic Escherichia coli isolates. Journal of Global Antimicrobial Resistance, 22, 806–810. https://doi.org/10.1016/j.jgar.2020.07.006
Diyantoro, & Wardhana, D. K. (2019). Risk factors for bacterial contamination of bovine meat during slaughter in ten Indonesian abattoirs. Veterinary Medicine International, 2019, Article 2707064. https://doi.org/10.1155/2019/2707064
Duijkeren, E. Van, Schink, A., Roberts, M. C., Wang, Y., & Schwarz, S. (2017). Mechanisms of bacterial resistance to antimicrobial agents. Microbiology Spectrum, 6(2), 1–31. https://doi.org/10.1128/microbiolspec.arba-0019-2017
Enciso-Martínez, Y., González-Aguilar, G. A., Martínez-Téllez, M. A., González-Pérez, C. J., Valencia-Rivera, D. E., Barrios-Villa, E., & Ayala-Zavala, J. F. (2022). Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. International Journal of Food Microbiology, 374, Article 109736. https://doi.org/10.1016/j.ijfoodmicro.2022.109736
Endale, H., Mathewos, M., & Abdeta, D. (2023). Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective: A Review. Infection and Drug Resistance, 2023(16), 7515–7545. https://doi.org/10.2147/IDR.S428837
Fang, J., Shen, Y., Qu, D., & Han, J. (2019). Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control, 95, 215–222. https://doi.org/10.1016/j.foodcont.2018.08.003
Fegan, N., & Jenson, I. (2018). The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management? Meat Science, 144, 22–29. https://doi.org/10.1016/j.meatsci.2018.04.018
Fontana, C., Patrone, V., Lopez, C. M., Morelli, L., & Rebecchi, A. (2021). Incidence of tetracycline and erythromycin resistance in meat-associated bacteria: Impact of different livestock management strategies. Microorganisms, 9(10), Article 2111. https://doi.org/10.3390/microorganisms9102111
Foudraine, D. E., Strepis, N., Stingl, C., Kate, M. T., Verbon, A., Klaassen, C. H. W., Goessens, W. H. F., Luider, T. M., & Dekker, L. J. M. (2021). Exploring antimicrobial resistance to beta‑lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Scientific Reports, 11, Article 12472. https://doi.org/10.1038/s41598-021-91905-w
Fuentes, R., Talavera, M., Vázquez, J., Soriano, E., & Gutiérrez, A. (2013). Presencia de integrones clase I en Escherichia coli aislada de productos cárnicos en plantas Tipo Inspección Federal (TIF) en el Estado de México. Veterinaria Mexico, 44(1), 23–30. https://www.scielo.org.mx/pdf/vetmex/v44n1/v44n1a3.pdf
Ghaly, T. M., Chow, L., Asher, A. J., Waldron, L. S., & Gillings, M. R. (2017). Evolution of class 1 integrons: Mobilization and dispersal via food-borne bacteria. PLoS ONE, 12(6), Article e0179169. https://doi.org/10.1371/journal.pone.0179169
Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2020). The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends in Microbiology, 28(6), 455–464. https://doi.org/10.1016/j.tim.2019.12.002
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399), 1–9. https://doi.org/10.1126/science.aam5324
Gomes, T., Elias, W., Scaletsky, I., Guth, B., Rodrigues, J., Piazza, R., Ferreira, L., & Martinez, M. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47(1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015
Grossman, T. H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6, Article a025387. https://doi.org/10.1101/cshperspect.a025387
Guragain, M., Schmidt, J. W., Bagi, L. K., Paoli, G. C., Kalchayanand, N., & Bosilevac, J. M. (2024). Antibiotic Resistance and Disinfectant Resistance Among Escherichia coli Isolated During Red Meat Production. Journal of Food Protection, 87(6), Article 100288. https://doi.org/10.1016/j.jfp.2024.100288
He, J., Qiao, W., An, Q., Yang, T., & Luo, Y. (2020). Dihydrofolate reductase inhibitors for use as antimicrobial agents. European Journal of Medicinal Chemistry, 195, Article 112268. https://doi.org/10.1016/j.ejmech.2020.112268
Hemeg, H. A. (2018). Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi Journal of Biological Sciences, 25(5), 928–931. https://doi.org/10.1016/j.sjbs.2018.01.016
Huang, L., Yuan, H., Liu, M.-F., Zhao, X.-X., Wang, M.-S., Jia, R.-Y., Chen, S., Sun, K.-F., Yang, Q., Wu, Y., Chen, X.-Y., Cheng, A.-C., & Zhu, D.-K. (2017). Type B Chloramphenicol acetyltransferases are responsible for chloramphenicol resistance in Riemerella anatipestifer, China. Frontiers in Microbiology, 8(297), 1–9. https://doi.org/10.3389/fmicb.2017.00297
Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J. P. A., Straus, S., Thorlund, K., Jansen, J. P., Mulrow, C., Catala-Lopez, F., Gotzsche, P. C., Dickersin, K., Boutron, I., Altman, D. G., & Moher, D. (2015). The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Annals of Internal Medicine, 162(11), 777–784. https://doi.org/10.7326/M14-2385
İnat, G., Sırıken, B., Çiftci, A., Erol, İ., Başkan, C., & Yıldırım, T. (2023). Molecular characterization of extended-spectrum β-lactamases-producing Enterobacteriaceae species in ground beef and chicken meat. International Journal of Food Microbiology, 398, Article 110228. https://doi.org/10.1016/j.ijfoodmicro.2023.110228
Jahantigh, M., Samadi, K., Dizaji, R. E., & Salari, S. (2020). Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Veterinary Research, 16, Article 267. https://doi.org/10.1186/s12917-020-02488-z
Jiang, Y., Peng, K., Wang, Q., Wang, M., Li, R., & Wang, Z. (2023). Novel trimethoprim resistance gene dfrA49 identified in Riemerella anatipestifer from China. Microbiology Spectrum, 11(2), 1–10. https://doi.org/10.1128/spectrum.04747-22
Jiménez, R., Gudiño, L., Aguilar, J., & Loeza, P. (2017). Caracterización molecular de Escherichia coli resistente a antibióticos aislada de mastitis bovina en Michoacán, México. Revista Mexicana de Ciencias Pecuarias, 8(4), 387–396. https://doi.org/10.22319/rmcp.v8i4.4251
Kallau, N. H. G., Wibawan, I. W. T., Lukman, D. W., & Sudarwanto, M. B. (2018). Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. Journal of Advanced Veterinary Research, 5(4), 388–396. http://doi.org/10.5455/javar.2018.e289
Kanokudom, S., Assawakongkarat, T., Akeda, Y., Ratthawongjirakul, P., Chuanchuen, R., & Chaichanawongsaroj, N. (2021). Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE, 16(3), Article e0248536. https://doi.org/10.1371/journal.pone.0248536
Kardjadj, M., & Luka, D. P. (2016). Current situation of milk and red meat industry in Algeria. Journal of Nutrition & Food Sciences, 6(4), 1–4. https://www.longdom.org/open-access/current-situation-of-milk-and-red-meat-industry-in-algeria-2155-9600-1000516.pdf
Kaur, K., Singh, S., & Kaur, R. (2024). Impact of antibiotic usage in food-producing animals on food safety and possible antibiotic alternatives. The Microbe, 4, Article 100097. https://doi.org/10.1016/j.microb.2024.100097
Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51, 167–176. https://doi.org/10.1016/j.ijantimicag.2017.10.004
Khanal, P. (2024). Use of land-based and aquatic alternative feed resources to establish a circular economy within livestock production. Journal of Agriculture and Food Research, 16, Article 101087. https://doi.org/10.1016/j.jafr.2024.101087
Kim, J., & Ahn, J. (2022). Emergence and spread of antibiotic‑resistant foodborne pathogens from farm to table. Food Science and Biotechnology, 31(12), 1481–1499. https://doi.org/10.1007/s10068-022-01157-1
Kim, Y.-J., Moon, J.-S., Oh, D.-H., Chon, J.-W., Song, B.-R., Lim, J.-S., Heo, E.-J., Park, H.-J., Wee, S.-H., & Sung, K. (2018). Genotypic characterization of ESBL-producing E. coli from imported meat in South Korea. Food Research International, 107, 158–164. https://doi.org/10.1016/j.foodres.2017.12.023
Kneis, D., Lemay-St-Denis, C., Cellier-Goetghebeur, S., Elena, A. X., Berendonk, T. U., Pelletier, J. N., & Heß, S. (2023). Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the dfrB gene. The ISME Journal, 17(9), 1455–1466. https://doi.org/10.1038/s41396-023-01460-7
Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: an overview. Cold Spring Harb Perspective in Medecine, 6(6), Article a027029. https://doi.org/10.1101/cshperspect.a027029
Krizman, M., Avgustin, J. A., Zdovc, I., Golob, M., Trkov, M., Ciglenecki, U. J., Biasizzo, M., & Kirbis, A. (2017). Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamases and other Escherichia coli isolated from food of animal origin and human intestinal isolates. Journal of Food Protection, 80(1), 113–120. https://doi.org/10.4315/0362-028X.JFP-16-214
La Plante, K. L., Dhand, A., Wright, K., & Lauterio, M. (2022). Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Annals of Medicine, 54(1), 1686–1700. https://doi.org/10.1080/07853890.2022.2085881
Li, T., Wang, Z., Guo, J., de la Fuente-Nunez, C., Wang, J., Han, B., Tao, H., Liu, J., & Wang, X. (2023). Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Science of the Total Environment, 860, Article 160461. https://doi.org/10.1016/j.scitotenv.2022.160461
Liu, M., Liu, J., Ma, J., Li, W., Zhao, X., Jia, W., & Li, S. (2022). Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from class 1 Integrons in Carbapenem-resistant Escherichia coli strains. Microbial Pathogenesis, 170, Article 105669. https://doi.org/https://doi.org/10.1016/j.micpath.2022.105669
Liu, Z., Zhang, Z., Yan, H., Li, J., & Shi, L. (2015). Isolation and molecular characterization of multidrug-resistant Enterobacteriaceae strains from pork and environmental samples in Xiamen, China. Journal of Food Protection, 78(1), 78–88. https://doi.org/10.4315/0362-028X.JFP-14-172
Machuca, J., de Alba, P. D., Recacha, E., Pascual, Á., & Rodriguez-Martinez, J. M. (2017). Cytotoxic effect associated with overexpression of QNR proteins in Escherichia coli. Microbial Drug Resistance, 23(7), 822–825. https://doi.org/10.1089/mdr.2016.0245
Mehdi, K., Vadod, R., Nordahr, R., & Mohammad, A. (2020). Genotypic and phenotypic assessment of antibiotic resistance and recognition of virulence factors in Escherichia coli O157 serogroup isolated from hamburger. Egyptian Journal of Veterinary Sciences, 51(2), 191-201. https://doi.org/10.21608/ejvs.2020.17668.1101
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online), 339, Article b2535. https://doi.org/10.1136/bmj.b2535
Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M., & El-Adawy, H. (2017). Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens, 9, Article 57. https://doi.org/10.1186/s13099-017-0206-9
Nguyen, D. P., Nguyen, T. A. D., Le, T. H., Tran, N. M. D., Ngo, T. P., Dang, V. C., Kawai, T., Kanki, M., Kawahara, R., Jinnai, M., Yonogi, S., Hirai, Y., Yamamoto, Y., & Kumeda, Y. (2016). Dissemination of Extended-Spectrum β -Lactamase- and AmpC β -Lactamase-Producing Escherichia coli within the Food Distribution System of Ho Chi Minh City, Vietnam. BioMed Research International, 2016, Article 8182096. https://doi.org/10.1155/2016/8182096
Niyonzima, E., Ongol, M. P., Kimonyo, A., & Sindic, M. (2015). Risk factors and control measures for bacterial contamination in the bovine meat chain: a review on Salmonella and pathogenic E. coli. Journal of Food Research, 4(5), 98–121. https://doi.org/10.5539/jfr.v4n5p98
OECD. (2024). Meat consumption. Meat Consumption Beef and Veal, Pork Meat, Kilograms/Capita - Retail Weight, 2023. Organisation for Economic Co-operation and Development. https://www.oecd.org/en/data/indicators/meat-consumption.html?oecdcontrol-106b3c3fe2-var3=2023&oecdcontrol-523be2d55c-var6=CPC_EX_BV%7CCPC_EX_PK&oecdcontrol-57c3acb58c-var1=USA%7CCHN%7CSAU%7CTHA&oecdcontrol-c42fc1f268-var8=FO_PC
Ojdana, D., Sienko, A., Sacha, P., Majewski, P., Wieczorek, P., Wieczorek, A., & Tryniszewska, E. (2018). Genetic basis of enzymatic resistance of E. coli to aminoglycosides. Advances in Medical Sciences, 63(1) 9–13. https://doi.org/10.1016/j.advms.2017.05.004
Okubo, T., Ae, R., Noda, J., Iizuka, Y., Usui, M., & Tamura, Y. (2019). Resistance detection of the sul2 – strA – strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. Journal of Global Antimicrobial Resistance, 17, 72–78. https://doi.org/10.1016/j.jgar.2018.11.005
Okubo, T., Yossapol, M., Ikushima, S., Kakooza, S., Wampande, E. M., Asai, T., Tsuchida, S., Ohya, K., Maruyama, F., Kabasa, J. D., & Ushida, K. (2020). Isolation and Characterization of Antimicrobial-Resistant Escherichia coli from Retail Meats from Roadside Butcheries in Uganda. Foodborne Pathogens and Disease, 17(11), 666–671. https://doi.org/10.1089/fpd.2020.2796
Ortega-Balleza, J. L., Requena-Castro, R., Cruz-Hernández, M. A., Martínez-Vázquez, A. V., Castro-Escarpulli, G., & Bocanegra-García, V. (2024). Resistencia a tetraciclinas en Escherichia coli aislada de aguas superficiales y residuales de Tamaulipas, México. Revista Internacional de Contaminación Ambiental, 40, 193–202. https://doi.org/10.20937/RICA.54492
Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile Genetic Elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), Article e00088-17. https://doi.org/10.1128/cmr.00088-17
Pehlivanlar, S., Aslantas, Ö., Sebnem, E., & Kürekci, C. (2015). Prevalence of β -Lactamase Producing Escherichia coli from Retail Meat in Turkey. Journal of Food Science, 80(9), M2023–M2029. https://doi.org/10.1111/1750-3841.12984
Poey, M. E., Azpiroz, M. F., & Laviña, M. (2019). On sulfonamide resistance, sul genes, class 1 integrons and their horizontal transfer in Escherichia coli. Microbial Pathogenesis, 135, Article 103611. https://doi.org/10.1016/j.micpath.2019.103611
Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6(4), 1–27. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
Pungpian, C., Sinwat, N., Angkititrakul, S., Prathan, R., & Chuanchuen, R. (2021). Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microbial Drug Resistance, 27(4), 571–584. https://doi.org/10.1089/mdr.2019.0438
Rani, Z. T., Mhlongo, L. C., & Hugo, A. (2023). Microbial profiles of meat at different stages of the distribution chain from the abattoir to retail outlets. International Journal of Environmental Research and Public Health, 20(3), Article 1986. https://doi.org/10.3390/ijerph20031986
Rebbah, N., Messai, Y., Chatre, P., Haenni, M., Madec, J., & Bakour, R. (2017). Diversity of CTX-M Extended-Spectrum b-Lactamases in Escherichia coli Isolates from Retail Raw Ground Beef: First Report of CTX-M-24 and CTX-M-32 in Algeria. Microbial Drug Resistence, 24(7): 896–908. https://doi.org/10.1089/mdr.2017.0171
Reyes-Rodríguez, N. E., Barba-León, J., Navarro-Ocaña, A., Vega-Sánchez, V., Gómez, F. R., Talavera-González, J. M., & Talavera-Rojas, M. (2020). Serotypes and Stx2 subtyping of Shiga toxin producing Escherichia coli isolates from cattle carcasses and feces. Revista Mexicana De Ciencias Pecuarias, 11(4), 1030–1044. https://doi.org/10.22319/RMCP.V11I4.5049
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482
Roberts, M. C., & Schwarz, S. (2016). Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. Journal of Environmental Quality, 45(2), 576–592. https://doi.org/10.2134/jeq2015.04.0207
Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B., Mevius, D. J., & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73(5), 1121–1137. https://doi.org/10.1093/jac/dkx488
Sabala, R. F., Usui, M., Tamura, Y., Abd-Elghany, S. M., Sallam, K. I., & Elgazzar, M. M. (2021). Prevalence of colistin-resistant Escherichia coli harbouring mcr-1 in raw beef and ready-to-eat beef products in Egypt. Food Control, 119, Article 107436. https://doi.org/10.1016/j.foodcont.2020.107436
Saliu, E., Vahjen, W., & Zentek, J. (2017). Types and prevalence of extended – spectrum beta – lactamase producing Enterobacteriaceae in poultry. Animal Health Research Reviews, 18(1), 46–57. https://doi.org/10.1017/S1466252317000020
Sánchez, F., Fuenzalida, V., Ramos, R., Escobar, B., Neira, V., Borie, C., Lapierre, L., López, P., Venegas, L., Dettleff, P., Johnson, T., Fuentes-Castillo, D., Lincopan, N., & Galarce, N. (2021). Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses and Public Health, 68(3), 226–238. https://doi.org/10.1111/zph.12818
Shin, S. W., Shin, M. K., Jung, M., Belaynehe, K. M., & Yoo, H. S. (2015). Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Applied and Environmental Microbiology, 81(16), 5560–5566. https://doi.org/10.1128/AEM.01511-15
Singh, T., Dar, S. A., Singh, S., Shekhar, C., Wani, S., Akhter, N., Bashir, N., Haque, S., Ahmad, A., & Das, S. (2021). Integron mediated antimicrobial resistance in diarrheagenic Escherichia coli in children: in vitro and in silico analysis. Microbial Pathogenesis, 150, Article 104680. https://doi.org/10.1016/j.micpath.2020.104680
Skočková, A., Koláčková, I., Bogdanovičová, K., & Karpíšková, R. (2015). Characteristic and antimicrobial resistance in Escherichia coli from retail meats purchased in the Czech Republic. Food Control, 47, 401–406. https://doi.org/10.1016/j.foodcont.2014.07.034
Soepranianondo, K., Wardhana, D. K., Budiarto, & Diyantoro. (2019). Analysis of bacterial contamination and antibiotic residue of beef meat from city slaughterhouses in East Java Province, Indonesia. Veterinary World, 12(2), 243–248. https://doi.org/10.14202/vetworld.2019.243-248
Srichumporn, W., Chaisowwong, W., Intanon, M., & Na-Lampang, K. (2022). Extended-spectrum beta-lactamase-producing Escherichia coli from pork in Muang district, Chiang Mai Province, Thailand. Veterinary World, 15(12), 2903–2909. https://doi.org/10.14202/vetworld.2022.2903-2909
Sun, H., Wan, Y., Du, P., Liu, D., Li, R., Zhang, P., Wu, Y., Fanning, S., Wang, Y., & Bai, L. (2021). Investigation of tigecycline resistant Escherichia coli from raw meat reveals potential transmission among food-producing animals. Food Control, 121, Article 107633. https://doi.org/10.1016/j.foodcont.2020.107633
Tadesse, D. A., Li, C., Mukherjee, S., Hsu, C. H., Bodeis Jones, S., Gaines, S. A., Kabera, C., Loneragan, G. H., Torrence, M., Harhay, D. M., McDermott, P. F., & Zhao, S. (2018). Whole-genome sequence analysis of CTX-M containing Escherichia coli isolates from retail meats and cattle in the United States. Microbial Drug Resistance, 24(7), 939–948. https://doi.org/10.1089/mdr.2018.0206
Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β -Lactamases and β -Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, 431(18), 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002
Venkatesan, M., Fruci, M., Verellen, L. A., Skarina, T., Mesa, N., Flick, R., Pham, C., Mahadevan, R., Stogios, P. J., & Savchenko, A. (2023). Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nature Communications, 14, Article 4031. https://doi.org/10.1038/s41467-023-39778-7
Vikram, A., Miller, E., Arthur, T. M., Bosilevac, J. M., Wheeler, T. L., & Schmidt, J. W. (2018). Similar levels of antimicrobial resistance in U.S. food service ground beef products with and without a ‘“raised without antibiotics”’ claim. Journal of Food Protection, 81(12), 2007–2018. https://doi.org/10.4315/0362-028X.JFP-18-299
Vikram, A., Miller, E., Arthur, T. M., Bosilevac, J. M., Wheeler, T. L., & Schmidt, J. W. (2019). Food service pork chops from three U.S. Regions harbor similar levels of antimicrobial resistance regardless of antibiotic use claims. Journal of Food Protection, 82(10), 1667–1676. https://doi.org/10.4315/0362-028X.JFP-19-139
Vogt, D., Overesch, G., Endimiani, A., Collaud, A., Thomann, A., & Perreten, V. (2014). Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microbial Drug Resistance, 20(5), 485–494. https://doi.org/10.1089/mdr.2013.0210
Wan, M. T., & Chou, C. C. (2015). Class 1 integrons and the antiseptic resistance gene (qacEΔ1) in municipal and swine slaughterhouse wastewater treatment plants and wastewater-associated methicillin-resistant Staphylococcus aureus. International Journal of Environmental Research and Public Health, 12(6), 6249–6260. https://doi.org/10.3390/ijerph120606249
Wang, Q., Lei, C., Cheng, H., Yang, X., Huang, Z., Chen, X., Ju, Z., Zhang, H., & Wang, H. (2022). Widespread dissemination of plasmid-mediated tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. Microbiology Spectrum, 10(5), 1–13. https://doi.org/10.1128/spectrum.01615-22
Wang, W., Wang, L., Su, J., & Xu, Z. (2020). Antibiotic Susceptibility, Biofilm-Forming Ability, and Incidence of Class 1 Integron of Salmonella spp., Escherichia coli, and Staphylococcus aureus Isolated from Various Foods in a School Canteen in China. Foodborne Pathogens and Disease, 17(4), 269–275. https://doi.org/10.1089/fpd.2019.2694
Warmate, D., & Onarinde, B. A. (2023). Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. International Journal of Food Microbiology, 398, Article 110240. https://doi.org/10.1016/j.ijfoodmicro.2023.110240
Xedzro, C., Kimura, T., Shimamoto, T. T., Ahmed, A. M., & Shimamoto, T. T. (2023). Comparative molecular profiling of antimicrobial resistance and phylogenetic characterization of multidrug-resistant Escherichia coli isolated from meat sources in 2009 and 2021 in Japan. International Journal of Food Microbiology, 391–393, Article 110146. https://doi.org/10.1016/j.ijfoodmicro.2023.110146
Xu, X., Cui, S., Zhang, F., Luo, Y., Gu, Y., Yang, B., Li, F., Chen, Q., Zhou, G., Wang, Y., Pang, L., & Lin, L. (2014). Prevalence and characterization of cefotaxime and ciprofloxacin co-resistant Escherichia coli isolates in retail chicken carcasses and ground pork, China. Microbial Drug Resistance, 20(1), 73–81. https://doi.org/10.1089/mdr.2012.0224
Zárate, S. G., De la Cruz, M. L., Benito-Arenas, R., Revuelta, J., Santana, A. G., & Bastida, A. (2018). Overcoming aminoglycoside enzymatic resistance: design of novel antibiotics and inhibitors. Molecules, 23(2) Article 284. https://doi.org/10.3390/molecules23020284
Zhang, S., Abbas, M., Rehman, M. U., Huang, Y., Zhou, R., Gong, S., Yang, H., Chen, S., Wang, M., & Cheng, A. (2020). Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Environmental Pollution, 266(2), Article 115260. https://doi.org/10.1016/j.envpol.2020.115260
Zhang, S., Huang, Y., Chen, M., Yang, G., Zhang, J., Wu, Q., Wang, J., Ding, Y., Ye, Q., Lei, T., Su, Y., Pang, R., Yang, R., & Zhang, Y. (2022). Characterization of Escherichia coli O157:non-H7 isolated from retail food in China and first report of mcr-1/IncI2-carrying colistin-resistant E. coli O157:H26 and E. coli O157:H4. International Journal of Food Microbiology, 378, Article 109805. https://doi.org/10.1016/j.ijfoodmicro.2022.109805
Zhong, Y., Guo, S., Seow, K. L. G., Ming, G. O. H., & Schlundt, J. (2021). Characterization of extended-spectrum Beta-lactamase-producing Escherichia coli isolates from Jurong Lake, Singapore with Whole-Genome-Sequencing. International Journal of Environmental Research and Public Health, 18(3) Article 937. https://doi.org/10.3390/ijerph18030937
Zhou, J., Chen, Y., Li, W., Qu, J., Chen, T., Wang, Y., & Geng, N. (2023). Deciphering the microbial community tolerance mechanism and alteration of antibiotic resistance genes during chloramphenicol wastewater treatment. International Biodeterioration & Biodegradation, 178, Article 105546. https://doi.org/10.1016/j.ibiod.2022.105546

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.