EN PRENSA. Papel de las micobacterias ambientales sobre la eficacia de la vacuna contra la tuberculosis bovina. EN PRENSA
PDF

Palabras clave

Tuberculosis bovina
vacunación
cabras
INF-y
micobacterias

Métricas de PLUMX 

Resumen

La tuberculosis bovina es una enfermedad infecto-contagiosa, que ocasiona severas pérdidas económicas directas o indirectas como limitaciones en la movilización y comercialización de animales y sus productos. En México, el control de la enfermedad se basa en la “prueba y sacrificio”, donde los animales reactores son enviados a rastro. Una alternativa para el control es la vacunación con BCG, la cual ya se ha probado en condiciones experimentales, demostrando una eficacia mayor al 60% sin embargo, existe la duda de que micobacterias ambientales enmascaran dicha eficacia. El objetivo de este trabajo fue descartar la presencia de micobacterias ambientales a través de la detección de IFN-g en respuesta a los antígenos PPD-bovis y PPD-avium. A partir de muestras sanguíneas de animales vacunados y no vacunados con BCG-Phipps y posteriormente desafiados a una cepa de campo de M. bovis, se obtuvo un promedio general de respuesta de IFN-g, el cual fue significativamente superior cuando el estímulo se hizo con PPD-bovis que con PPD-avium, por lo que podemos concluir que las micobacterias ambientales no tienen influencia sobre la respuesta a la vacunación. 

https://doi.org/10.15741/revbio.13.e1984
PDF

Citas

Alcaraz-López, O.A., Flores-Villalva, S., Cortéz-Hernández, O., Vigueras-Meneses, G., Carrisoza-Urbina, J., Benítez-Guzmán, A., Esquivel-Solís, H., Werling, D., Salguero-Bodes, F.J., Vordemeier, M., Villarreal-Ramos, B.., & Gutiérrez-Pabello, J.A. (2021). Association of immune responses of Zebu and Holstein-Friesian cattle and resistance to mycobacteria in a BCG challenge model. Transboundary and Emerging Diseases. 68(6),3360-3365. https://doi.org/10.1111/tbed.13939

Borham, M., Oreiby, A., El-Gedawy, A., Hegazy, Y., Khalifa, H.O., Al-Gaabary, M., & Matsumoto, T. (2022). Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens. 11(7),715. https://doi.org/10.3390/pathogens11070715

Brosch, R., Gordon, S.V., Garnier, T., Eiglmeier, K., Frigui, W., Valenti, P., ... & Cole, S. T. (2007). Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5596–5601. https://doi.org/10.1073/pnas.0700869104

Buddle, B.M. (2010). Tuberculosis vaccines for cattle: The way forward. Expert Review of Vaccines, 9(10), 1121–1124. https://doi.org/10.1586/erv.10.112

Buddle, B.M., Aldwell, F.E., Skinner, M.A., de Lisle, G.W., Denis, M., Vordermeier, H.M., Hewinson, R.G., & Wedlock, D.N. (2005). Effect of oral vaccination of cattle with lipid-formulated BCG on immune responses and protection against bovine tuberculosis. Vaccine. 23(27),3581-9. https://doi.org/10.1016/j.vaccine.2005.01.150

Buddle, B.M., de Lisle, G.W., Pfeffer, A., & Aldwell, F.E. (1995). Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine. 13(12),1123-30. https://doi.org/10.1016/0264-410x(94)00055-r

Buddle, B.M., Vordermeier, H.M., Chambers, M.A., & de Klerk-Lorist, L.M. (2018). Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Frontiers in Veterinary Science. 26(5),259. https://doi.org/10.3389/fvets.2018.00259

Buddle, B.M., Wards, B.J., Aldwell, F.E., Collins, D.M., & De Lisle, G.W. (2002). Influence of sensitization to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine, 20(7), 1126–1133. https://doi.org/10.1016/s0264-410x(01)00436-4

Cantó-Alarcón, G.J., Rubio-Venegas, Y., Bojorquez-Narvaez, L., Pizano-Martínez, O.E., García-Casanova, L., Sosa-Gallegos, S., Nava-Vargas, A., Olvera-Ramírez, A.M., & Milián-Suazo, F. (2013). Efficacy of a vaccine formula against tuberculosis in cattle. PLoS One. 8(10), e76418. https://doi.org/10.1371/journal.pone.0076418

Contreras-Magallanes, Y.G., Durán-Aguilar, M., Sosa-Gallegos, S.L., Álvarez, Á.H., Andrade-Santillán, F.A., Bárcenas-Reyes, I., González-Ruíz, S., Rodríguez-Hernández, E., Cantó-Alarcón, G.J., & Milián-Suazo, F. (2021). Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals (Basel). 11(4),1046. https://doi.org/10.3390/ani11041046

De Lisle, G.W., Wilson, T., Collins, D.M., & Buddle, B.M. (1999). Vaccination of guinea pigs with nutritionally impaired avirulent mutants of Mycobacterium bovis protects against tuberculosis. Infection and Immunity Journal. 7(5),2624-6. https://doi.org/10.1128/iai.67.5.2624-2626.1999

Denis, M., Wedlock, D.N., McCarthy, A.R., Parlane, N.A., Cockle, P.J., Vordermeier, H.M., Hewinson, R.G., & Buddle, B.M. (2007). Enhancement of the sensitivity of the whole blood gamma interferon assay for diagnosis of Mycobacterium bovis infections in cattle. Clinical and Vaccine Immunology. 14,1483–1489. https://doi.org/10.1128/cvi.00291-07

Díaz-Otero, F., Padilla, J., Jaramillo, L., González, D., & Arriaga, C. (2008). Evaluation of BCG vaccine and Mycobacterium bovis culture filtrate proteins against bovine tuberculosis. Annals of the New York Academy of Sciences. 1149,306-8. https://doi.org/10.1196/annals.1428.014

Falkinham, J.O. (2022). Nontuberculous mycobacteria in the environment. Tuberculosis, 137, 102267. https://doi.org/10.1016/j.tube.2022.102267

Fromsa, A., Willgert, K., Srinivasan, S., Mekonnen, G., Bedada, W., Gumi, B., Lakew, M., Tadesse, B., Bayissa, B., Sirak, A., Girma-Abdela, M., Gebre, S., Chibssa, T., Veerasami, M., Vordermeier, H.M., Bakker, D., Berg, S., Ameni, G., Juleff, N., & Kapur, V. (2024). BCG vaccination reduces bovine tuberculosis transmission, improving prospects for elimination. Science. 383,6690. https://doi.org/10.1126/science.adl3962

Hope, J.C., Thom, M.L., Villarreal-Ramos, B., Vordermeier, H.M., Hewinson, R.G., & Howard, C.J. (2005). Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clinical & Experimental Immunology. 139(1),48-56. https://doi.org/10.1111/j.1365-2249.2005.02668.x

Klepp, L.I., Eirin, M.E., Garbaccio, S., Soria, M., Bigi, F., & Blanco, F.C. (2019). Identification of bovine tuberculosis biomarkers to detect tuberculin skin test and IFN-γ release assay false negative cattle. Research in Veterinary Science. 122,7-14. https://doi.org/10.1016/j.rvsc.2018.10.016

Milián-Suazo, F., Gutiérrez-Pabello, J.A., Bojórquez-Narváez, L., Anaya-Escalera, A.M., Cantó-Alarcón, G.J., González-Enríquez, J.L., & Campos-Guillén, J. (2011). IFN-g response to vaccination against tuberculosis in dairy heifers under commercial settings. Research in Veterinary Science. 90(3),419-24. https://doi.org/10.1016/j.rvsc.2010.07.018

Okafor, C.N., Rewane, A., & Momodu, I.I. (2023). Bacilo de Calmette y Guerin. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK538185/

OMSA [Organización Mundial de Sanidad Animal]. Controlling bovine tuberculosis: a One Health challenge. Bulletin #2019-1. Available from: https://bulletin.woah.org/wp-content/uploads/bulletins/panorama-2019-1-en.pdf

Parlane, N.A., & Buddle, B.M. (2015). Immunity and Vaccination against Tuberculosis in Cattle. Current Clinical Microbiology Reports, 2(1), 44–53. https://link.springer.com/article/10.1007/s40588-014-0009-4

Perera-Ortiz, A., Perea, C., Davalos, E., Flores-Velázquez, E., Salazar-González, K., Rosas-Camacho, E., García-Latorre, E.A., Salinas-Lara, C., Muñiz-Salazar, R., Bravo, D.M., Stuber, T.P., Thacker, T.C., & Robbe-Austerman, S. (2021). Whole genoma sequencing links Mycobacterium bovis from cattle, cheese and humans in Baja California, Mexico. Frontiers in Veterinary Science. 3(8),674307. https://doi.org/10.3389/fvets.2021.674307

Rivera, P.S., Jiménez, J.F., & Deward, J. (2009). Valoración de las pruebas diagnósticas para tuberculosis bovina en un rebaño bovino ubicado en zona de alta incidencia del estado Zulia, Venezuela. Revista Científica, 19(6), 566–575. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592009000600003

Rojas-Martínez, C., Loza-Rubio, E., Rodríguez-Camarillo, S.D., Figueroa-Millán, J.V., Aguilar-Romero, F., Lagunes-Quintanilla, R.E., & Álvarez Martínez, J. A. (2021). Antecedentes y perspectivas de algunas enfermedades prioritarias que afectan a la ganadería bovina en México. Revista Mexicana de Ciencias Pecuarias. 12, 111–148. https://doi.org/10.22319/rmcp.v12s3.5848

Rothel, J.S., Jones, S.L., Corner, L.A., Cox, J.C., & Wood, P.R. (1992). The gamma-interferon assay for diagnosis of bovine tuberculosis in cattle: conditions affecting the production of gamma-interferon in whole blood culture. Australian Veterinary Journal. 69(1),1-4. https://doi.org/10.1111/j.1751-0813.1992.tb09848.x

Sánchez-López., A.D., Flores-Villalva, S., & Gutiérrez-Pabello, J.A. (2017). Mycobacterium bovis induce una respuesta inmune celular heterogénea en bovinos infectados naturalmente. Revista Mexicana de Ciencias Pecuarias. 9(1), 171–183. https://doi.org/10.22319/rmcp.v9i1.4320

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [SENASICA]. Situación Actual de la Tuberculosis Bovina en México. México (2024). Consultado el 2 de septiembre de 2025). Available online at: https://www.gob.mx/senasica/documentos/situacion-actual-de-tuberculosis-bovina?state=published

Skinner, M.A., Buddle, B.M., Wedlock, D.N., Keen, D., Lisle, G.W., Tascon, R.E., Ferraz, J.C., Lowrie, D.B., Cockle, P.J., Vordermeier, H.M., & Hewinson, R.G. (2003). A DNA Prime-Mycobacterium bovis BCG Boost Vaccination Strategy for Cattle Induces Protection against Bovine Tuberculosis. Infection and Immunity, 71(9), 4901. https://doi.org/10.1128/IAI.71.9.4901-4907.2003

Sopp, P., Coad, M., Hewinson, G., Howard, C.J., Cheallaigh, C.N., Keane, J., Harris, J., & Hope, J.C. (2008). Development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis infected cattle. Vaccine 26,5470–5476. https://doi.org/10.1016/j.vaccine.2008.07.059

Srinivasan, S., Conlan, A.J.K., Easterling, L.A., Herrera, C., Dandapat, P., Veerasami, M., Ameni, G., Jindal, N., Raj, G.D., Wood, J., Juleff, N., Bakker, D., Vordermeier, M., & Kapur, V. (2021). A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good? Frontiers in Veterinary Science 18(8),637580. https://doi.org/10.3389/fvets.2021.637580

Taye, H., Alemu, K., Mihret, A., Wood, J.L.N., Shkedy, Z., Berg, S., & Aseffa, A. (2021). Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7),704-718. https://doi.org/10.1111/zph.12868

Vordermeier, H.M., Chambers, M.A., Cockle, P.J., Whelan, A.O., Simmons, J., & Hewinson, R.G. (2002). Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental Bovine Tuberculosis. Infection and Immunity Journal. 70(6),3026-32. https://doi.org/10.1128/iai.70.6.3026-3032.2002

Vordermeier, H.M., Whelan, A., Cockle, P.J., Farrant, L., Palmer, N., & Hewinson, R.G. (2001). Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of Bovine Tuberculosis in cattle. Clinical and Diagnostic Laboratory Immunology. 8(3),571-8. https://doi.org/10.1128/cdli.8.3.571-578.2001

World Health Organization [WHO]. (2020). Geneva: Global tuberculosis report 2020. Licence CC BY-NC-SA 3.0 IGO. Available from: https://iris.who.int/server/api/core/bitstreams/b1692b45-a92a-4871-8392-72080827ea6d/content

Young, S.L., Slobbe, L., Wilson, R., Buddle, B.M., De Lisle, G.W., & Buchan, G.S. (2007). Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination. Infection and Immunity Journal. 75,2833–2840. https://doi.org/10.1128/iai.01826-06

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional