Abstract
Bovine tuberculosis is an infectious-contagious disease that causes severe direct or indirect economic losses, such as limitations in the movement and trade of animals and their products. In Mexico, the control of the disease is based on “test and slaughter”, where reactive animals are sent to slaughterhouses. An alternative for control is vaccination with BCG, which has already been tested under experimental conditions, demonstrating an efficacy of more than 60%. However, there is doubt that environmental mycobacteria mask this efficacy. The objective of this work was to rule out the presence of environmental mycobacteria through the detection of IFN-γ in response to the PPD-bovis and PPD-avium antigens. From blood samples from animals vaccinated and not vaccinated with BCG-Phipps and subsequently challenged with a field strain of M. bovis, a general average IFN-γ response was obtained, which was significantly higher when the stimulus was made with PPD-bovis than with PPD-avium, so we can conclude that environmental mycobacteria have no influence on the response to vaccination.
References
Alcaraz-López, O.A., Flores-Villalva, S., Cortéz-Hernández, O., Vigueras-Meneses, G., Carrisoza-Urbina, J., Benítez-Guzmán, A., Esquivel-Solís, H., Werling, D., Salguero-Bodes, F.J., Vordemeier, M., Villarreal-Ramos, B.., & Gutiérrez-Pabello, J.A. (2021). Association of immune responses of Zebu and Holstein-Friesian cattle and resistance to mycobacteria in a BCG challenge model. Transboundary and Emerging Diseases. 68(6),3360-3365. https://doi.org/10.1111/tbed.13939
Borham, M., Oreiby, A., El-Gedawy, A., Hegazy, Y., Khalifa, H.O., Al-Gaabary, M., & Matsumoto, T. (2022). Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens. 11(7),715. https://doi.org/10.3390/pathogens11070715
Brosch, R., Gordon, S.V., Garnier, T., Eiglmeier, K., Frigui, W., Valenti, P., ... & Cole, S. T. (2007). Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5596–5601. https://doi.org/10.1073/pnas.0700869104
Buddle, B.M. (2010). Tuberculosis vaccines for cattle: The way forward. Expert Review of Vaccines, 9(10), 1121–1124. https://doi.org/10.1586/erv.10.112
Buddle, B.M., Aldwell, F.E., Skinner, M.A., de Lisle, G.W., Denis, M., Vordermeier, H.M., Hewinson, R.G., & Wedlock, D.N. (2005). Effect of oral vaccination of cattle with lipid-formulated BCG on immune responses and protection against bovine tuberculosis. Vaccine. 23(27),3581-9. https://doi.org/10.1016/j.vaccine.2005.01.150
Buddle, B.M., de Lisle, G.W., Pfeffer, A., & Aldwell, F.E. (1995). Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine. 13(12),1123-30. https://doi.org/10.1016/0264-410x(94)00055-r
Buddle, B.M., Vordermeier, H.M., Chambers, M.A., & de Klerk-Lorist, L.M. (2018). Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Frontiers in Veterinary Science. 26(5),259. https://doi.org/10.3389/fvets.2018.00259
Buddle, B.M., Wards, B.J., Aldwell, F.E., Collins, D.M., & De Lisle, G.W. (2002). Influence of sensitization to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine, 20(7), 1126–1133. https://doi.org/10.1016/s0264-410x(01)00436-4
Cantó-Alarcón, G.J., Rubio-Venegas, Y., Bojorquez-Narvaez, L., Pizano-Martínez, O.E., García-Casanova, L., Sosa-Gallegos, S., Nava-Vargas, A., Olvera-Ramírez, A.M., & Milián-Suazo, F. (2013). Efficacy of a vaccine formula against tuberculosis in cattle. PLoS One. 8(10), e76418. https://doi.org/10.1371/journal.pone.0076418
Contreras-Magallanes, Y.G., Durán-Aguilar, M., Sosa-Gallegos, S.L., Álvarez, Á.H., Andrade-Santillán, F.A., Bárcenas-Reyes, I., González-Ruíz, S., Rodríguez-Hernández, E., Cantó-Alarcón, G.J., & Milián-Suazo, F. (2021). Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals (Basel). 11(4),1046. https://doi.org/10.3390/ani11041046
De Lisle, G.W., Wilson, T., Collins, D.M., & Buddle, B.M. (1999). Vaccination of guinea pigs with nutritionally impaired avirulent mutants of Mycobacterium bovis protects against tuberculosis. Infection and Immunity Journal. 7(5),2624-6. https://doi.org/10.1128/iai.67.5.2624-2626.1999
Denis, M., Wedlock, D.N., McCarthy, A.R., Parlane, N.A., Cockle, P.J., Vordermeier, H.M., Hewinson, R.G., & Buddle, B.M. (2007). Enhancement of the sensitivity of the whole blood gamma interferon assay for diagnosis of Mycobacterium bovis infections in cattle. Clinical and Vaccine Immunology. 14,1483–1489. https://doi.org/10.1128/cvi.00291-07
Díaz-Otero, F., Padilla, J., Jaramillo, L., González, D., & Arriaga, C. (2008). Evaluation of BCG vaccine and Mycobacterium bovis culture filtrate proteins against bovine tuberculosis. Annals of the New York Academy of Sciences. 1149,306-8. https://doi.org/10.1196/annals.1428.014
Falkinham, J.O. (2022). Nontuberculous mycobacteria in the environment. Tuberculosis, 137, 102267. https://doi.org/10.1016/j.tube.2022.102267
Fromsa, A., Willgert, K., Srinivasan, S., Mekonnen, G., Bedada, W., Gumi, B., Lakew, M., Tadesse, B., Bayissa, B., Sirak, A., Girma-Abdela, M., Gebre, S., Chibssa, T., Veerasami, M., Vordermeier, H.M., Bakker, D., Berg, S., Ameni, G., Juleff, N., & Kapur, V. (2024). BCG vaccination reduces bovine tuberculosis transmission, improving prospects for elimination. Science. 383,6690. https://doi.org/10.1126/science.adl3962
Hope, J.C., Thom, M.L., Villarreal-Ramos, B., Vordermeier, H.M., Hewinson, R.G., & Howard, C.J. (2005). Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovis. Clinical & Experimental Immunology. 139(1),48-56. https://doi.org/10.1111/j.1365-2249.2005.02668.x
Klepp, L.I., Eirin, M.E., Garbaccio, S., Soria, M., Bigi, F., & Blanco, F.C. (2019). Identification of bovine tuberculosis biomarkers to detect tuberculin skin test and IFN-γ release assay false negative cattle. Research in Veterinary Science. 122,7-14. https://doi.org/10.1016/j.rvsc.2018.10.016
Milián-Suazo, F., Gutiérrez-Pabello, J.A., Bojórquez-Narváez, L., Anaya-Escalera, A.M., Cantó-Alarcón, G.J., González-Enríquez, J.L., & Campos-Guillén, J. (2011). IFN-g response to vaccination against tuberculosis in dairy heifers under commercial settings. Research in Veterinary Science. 90(3),419-24. https://doi.org/10.1016/j.rvsc.2010.07.018
Okafor, C.N., Rewane, A., & Momodu, I.I. (2023). Bacilo de Calmette y Guerin. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK538185/
OMSA [Organización Mundial de Sanidad Animal]. Controlling bovine tuberculosis: a One Health challenge. Bulletin #2019-1. Available from: https://bulletin.woah.org/wp-content/uploads/bulletins/panorama-2019-1-en.pdf
Parlane, N.A., & Buddle, B.M. (2015). Immunity and Vaccination against Tuberculosis in Cattle. Current Clinical Microbiology Reports, 2(1), 44–53. https://link.springer.com/article/10.1007/s40588-014-0009-4
Perera-Ortiz, A., Perea, C., Davalos, E., Flores-Velázquez, E., Salazar-González, K., Rosas-Camacho, E., García-Latorre, E.A., Salinas-Lara, C., Muñiz-Salazar, R., Bravo, D.M., Stuber, T.P., Thacker, T.C., & Robbe-Austerman, S. (2021). Whole genoma sequencing links Mycobacterium bovis from cattle, cheese and humans in Baja California, Mexico. Frontiers in Veterinary Science. 3(8),674307. https://doi.org/10.3389/fvets.2021.674307
Rivera, P.S., Jiménez, J.F., & Deward, J. (2009). Valoración de las pruebas diagnósticas para tuberculosis bovina en un rebaño bovino ubicado en zona de alta incidencia del estado Zulia, Venezuela. Revista Científica, 19(6), 566–575. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592009000600003
Rojas-Martínez, C., Loza-Rubio, E., Rodríguez-Camarillo, S.D., Figueroa-Millán, J.V., Aguilar-Romero, F., Lagunes-Quintanilla, R.E., & Álvarez Martínez, J. A. (2021). Antecedentes y perspectivas de algunas enfermedades prioritarias que afectan a la ganadería bovina en México. Revista Mexicana de Ciencias Pecuarias. 12, 111–148. https://doi.org/10.22319/rmcp.v12s3.5848
Rothel, J.S., Jones, S.L., Corner, L.A., Cox, J.C., & Wood, P.R. (1992). The gamma-interferon assay for diagnosis of bovine tuberculosis in cattle: conditions affecting the production of gamma-interferon in whole blood culture. Australian Veterinary Journal. 69(1),1-4. https://doi.org/10.1111/j.1751-0813.1992.tb09848.x
Sánchez-López., A.D., Flores-Villalva, S., & Gutiérrez-Pabello, J.A. (2017). Mycobacterium bovis induce una respuesta inmune celular heterogénea en bovinos infectados naturalmente. Revista Mexicana de Ciencias Pecuarias. 9(1), 171–183. https://doi.org/10.22319/rmcp.v9i1.4320
Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria [SENASICA]. Situación Actual de la Tuberculosis Bovina en México. México (2024). Consultado el 2 de septiembre de 2025). Available online at: https://www.gob.mx/senasica/documentos/situacion-actual-de-tuberculosis-bovina?state=published
Skinner, M.A., Buddle, B.M., Wedlock, D.N., Keen, D., Lisle, G.W., Tascon, R.E., Ferraz, J.C., Lowrie, D.B., Cockle, P.J., Vordermeier, H.M., & Hewinson, R.G. (2003). A DNA Prime-Mycobacterium bovis BCG Boost Vaccination Strategy for Cattle Induces Protection against Bovine Tuberculosis. Infection and Immunity, 71(9), 4901. https://doi.org/10.1128/IAI.71.9.4901-4907.2003
Sopp, P., Coad, M., Hewinson, G., Howard, C.J., Cheallaigh, C.N., Keane, J., Harris, J., & Hope, J.C. (2008). Development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis infected cattle. Vaccine 26,5470–5476. https://doi.org/10.1016/j.vaccine.2008.07.059
Srinivasan, S., Conlan, A.J.K., Easterling, L.A., Herrera, C., Dandapat, P., Veerasami, M., Ameni, G., Jindal, N., Raj, G.D., Wood, J., Juleff, N., Bakker, D., Vordermeier, M., & Kapur, V. (2021). A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good? Frontiers in Veterinary Science 18(8),637580. https://doi.org/10.3389/fvets.2021.637580
Taye, H., Alemu, K., Mihret, A., Wood, J.L.N., Shkedy, Z., Berg, S., & Aseffa, A. (2021). Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: Systematic review and meta-analysis. Zoonoses Public Health 68(7),704-718. https://doi.org/10.1111/zph.12868
Vordermeier, H.M., Chambers, M.A., Cockle, P.J., Whelan, A.O., Simmons, J., & Hewinson, R.G. (2002). Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental Bovine Tuberculosis. Infection and Immunity Journal. 70(6),3026-32. https://doi.org/10.1128/iai.70.6.3026-3032.2002
Vordermeier, H.M., Whelan, A., Cockle, P.J., Farrant, L., Palmer, N., & Hewinson, R.G. (2001). Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of Bovine Tuberculosis in cattle. Clinical and Diagnostic Laboratory Immunology. 8(3),571-8. https://doi.org/10.1128/cdli.8.3.571-578.2001
World Health Organization [WHO]. (2020). Geneva: Global tuberculosis report 2020. Licence CC BY-NC-SA 3.0 IGO. Available from: https://iris.who.int/server/api/core/bitstreams/b1692b45-a92a-4871-8392-72080827ea6d/content
Young, S.L., Slobbe, L., Wilson, R., Buddle, B.M., De Lisle, G.W., & Buchan, G.S. (2007). Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination. Infection and Immunity Journal. 75,2833–2840. https://doi.org/10.1128/iai.01826-06

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.