Abstract
Mexican oregano (Lippia graveolens Kunth) is a spice of great commercial value for Mexico as a condiment, mainly due to its essential oil content. However, little use has been made of its high content of water-soluble phenolic compounds such as pinocembrin, a flavanone with antioxidant properties of great nutritional and health importance. During the extractive process of the essential oil from its leaves, a large amount of solid waste rich in flavonoids is generated, which is minimally used and even becomes a source of contamination due to its poor disposal as waste. In order to value this agro-industrial waste, the bagasse was characterized by determining the total phenol content, antioxidant activity and pinocembrin content, observing a good content of this compound in the obtained extract (0.71 mg/ml). The results suggest that the residual bagasse from the extraction of the essential oil can be used with great potential due to its high content of polyphenols, antioxidant capacity and pinocembrin, therefore, extracts rich in pinocembrin were prepared by means of separation by chromatographic column, being able to generate products enriched in pinocembrin (1.38 mg/ml). The objective of this project was to evaluate the oxidative stabilization capacity of extracts and fractions enriched in pinocembrin from residual Mexican oregano bagasse as a potential food additive in sunflower vegetable oil, finding outstanding protective capacities against lipid peroxidation compared to the corresponding ones provided by BHT, a synthetic antioxidant commonly used for this purpose.
References
Aladedunye, F. A. (2014). Natural antioxidants as stabilizers of frying oils. European Journal of Lipid Science and Technology, 116 (6), 688-706. https://doi.org/10.1002/ejlt.201300267
Chung, A. S., & Ferrara, N. (2011). Developmental and pathological angiogenesis. Annual Review of Cell and Developmental Biology, 27 (1), 563-584. https://doi.org/10.1146/annurev-cellbio-092910-154002
Cid-Pérez, T. S., Ávila-Sosa, R., Ochoa-Velasco, C. E., Rivera-Chavira, B. E., & Nevárez-Moorillón, G. V. (2019). Antioxidant and antimicrobial activity of Mexican oregano (Poliomintha longiflora) essential oil, hydrosol and extracts from waste solid residues. Plants, 8 (1), 22. https://doi.org/10.3390/plants8010022
Cortés-Chitala, M. C., Flores-Martínez, H., Orozco-Ávila, I., León-Campos, C., Suárez-Jacobo, Á., Estarrón-Espinosa, M., & López-Muraira, I. (2021). Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules, 26 (3), 702. https://doi.org/10.3390/molecules26030702
Cuevas-González, M. F., Flores-Martínez, H., León-Campos, C., López-Muraira, I. G., & Padilla-Rosa, J. D., (2021) Valorization of the residual bagasse of Mexican oregano (Lippia graveolens HBK) by obtaining fractions enriched in pinocembrin. Renewable Energy, Biomass & Sustainability, 3 (1), 11-23. https://aldeser.org/ojs/index.php/REBS/issue/view/4
Engin, A. B., Bukan, N., Kurukahvecioglu, O., Memis, L., & Engin, A. (2011). Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration. Environmental toxicology and pharmacology, 32 (3), 457-464. https://doi.org/10.1016/j.etap.2011.08.014
Flores–Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Avila, I. (2016). Process optimization for the extraction of antioxidans from mexicano oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Revista Mexicana de Ingeniería Química, 15 (3), 773-785. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/1034
González-Gallego, J., Sánchez -Collado, P., & Mataix-Verdú, J. (2006). Nutrición en el deporte. Ediciones Díaz de Santos, 1, 23-31. https://www.editdiazdesantos.com/libros/9788479787707/Gonzalez-Gallego-Nutricion-en-el-deporte.html
Granados-Pineda, J., Uribe-Uribe, N., García-López, P., Ramos-Godínez, M. D. P., Rivero-Cruz, J. F., & Pérez-Rojas, J. M. (2018). Effect of pinocembrin isolated from Mexican brown propolis on diabetic nephropathy. Molecules, 23 (4), 852. https://doi.org/10.3390/molecules23040852
Gutiérrez-del-Río, I., López-Ibáñez, S., Magadán-Corpas, P., Fernández-Calleja, L., Pérez-Valero, Á., Tuñón-Granda, M., Migueles, E. M., Villar, C. J., & Lombó, F. (2021) Terpenoides y Polifenoles como Agentes Antioxidantes Naturales en la Conservación de Alimentos. Antioxidantes, 10, 1264. https://doi.org/10.3390/antiox10081264
Hernández, F. A., Hernández, H, J., Madinaveitia, R. L., Martín, M. S., Medrano, L. J., & Valenzuela, N. L., (2008). Producción y extracción de aceite de orégano (Lippia graveolens Kunth) bajo cultivo en la Comarca Lagunera. Revista mexicana de ciencias forestales, 2 (3), 120-113. https://www.scielo.org.mx/scielo.php?pid=S2007-11322011000100009&script=sci_abstract
Jan, P., Nedyalka, Y., & Michael, G. (2001). Antioxidants in Food: Practical Applications: Woodhead Publishing Series in Food Science, Technology and Nutrition (Doctoral dissertation, Woodhead Publishing). http://dx.doi.org/10.1079/BJN2001510
Katalinic, V., Milos, M., Kulisic, T., & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food chemistry, 94 (4), 550-557. https://doi.org/10.1016/j.foodchem.2004.12.004
Lin, L. Z., Mukhopadhyay, S., Robbins, R. J., & Harnly, J. M. (2007). Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of food composition and analysis, 20 (5),361-369. https://doi.org/10.1016/j.jfca.2006.09.005
Liu, R., Li, J. Z., Song, J. K., Zhou, D., Huang, C., Bai, X. Y., Zhang, L., & Du, G. H. (2014). Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiology of aging, 35 (6), 1275-1285. https://doi.org/10.1186/1741-7015-10-105
Loeza-Concha, H., Salgado-Moreno, S., Avila-Ramos, F., Gutiérrez-Leyva, R., Domínguez-Rebolledo, A., Ayala- Martinez, M., & Escalera-Valente, F. (2020). Revisión del aceite de orégano spp. en salud y producción animal. Abanico agroforestal, 2, 201. http://dx.doi.org/10.37114/abaagrof/2020.1
Martínez-Natarén, D. A., Parra-Tabla, V., Dzib, G., Acosta-Arriola, V., Canul-Puc, K. A., & Calvo-Irabién, L. M. (2012). Essential oil yield variation within and among wild populations of Mexican oregano (Lippia graveolens HBK- Verbenaceae), and its relation to climatic and edaphic conditions. Journal of Essential Oil Bearing Plants, 15 (4), 589-601. https://doi.org/10.1080/0972060X.2012.10644093
Mustafa, A. M., Angeloni, S., Abouelenein, D., Acquaticci, L., Xiao, J., Sagratini, G., Caprioli, G., Maggi, F., & Vittori, S. (2021). A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chemistry, 367, 130743. https://doi.org/10.1016/j.foodchem.2021.130743
Nyotia, N., Khong, H. Y., Ahmad, S. H, Isabel, F. L., & Aimi, S. S. (2016). Isolation and synthesis of pinocembrin and pinostrobin from Artocarpus odoratissimus. Malaysian Journal of Analytical Sciences. 21 (5), 1156 – 1161. https://doi.org/10.17576/mjas-2017-2105-19
Osti-Castillo, M. R., Torres-Valencia, J. M., Villagómez-Ibarra, J. R., & Castellán-Pelcastre, I. (2010). Estudio químico de cinco plantas mexicanas de uso común en la medicina tradicional. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 9 (5), 359-367. http://www.redalyc.org/revista.oa?id=856
Peñaloza, J. K., Rojano, B. A., & Piedrahita, A. M. (2017). Selection and role of a mix rosemary (Rosmarinus officinalis) palmitate ascorbyl as antioxidant in a frying process. Vitae, Revista de la facultad de ciencias farmacéuticas y alimentarias, 24 (2), 113-123. http://dx.doi.org/10.17533/udea.vitae.v24n2a04
Pokorny, J., Aramayona, J. J. Yanishlieva, N., & Gordon, M. (2004). Antioxidants in food. Practical applications. Zaragoza Acribia. https://dialnet.unirioja.es/servlet/libro?codigo=5818
Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial Properties of Propolis. Molecules, 24 (11), 2047. https://doi.org/10.3390/molecules24112047
Ruiz-Domínguez, M. L. (2015). Técnicas y prácticas de laboratorio para el análisis de aceite de oliva virgen proyecto mejora de las economías regionales y desarrollo local. Cuaderno Tecnológico, 23, 1-40. https://docplayer.es/48807425-Tecnicas-y-practicas-de-laboratorio-para-el-analisis-de-aceite-de-oliva-virgen-%20%20proyecto-mejora-de-las-economias-regionales-y-desarrollo-local.html
Salatino, A., Fernandes-Silva, C. C., Righi, A. A., & Salatino, M. L. F. (2011). Propolis research and the chemistry of plant products. Natural product reports, 28 (5), 925-936. https://doi.org/10.1039/c0np00072h
Vanhanen, L. P., & Savage, G. P. (2006). The use of peroxide value as a measure of quality for walnut flour stored at five different temperatures using three different types of packaging. Food chemistry, 99 (1), 64-69. https://doi.org/10.1016/j.foodchem.2005.07.020
Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Acedo-Félix, E., Carvajal-Millán, E., González-Córdova, A. F., Vallejo-Galland, B., Torres-Llanez, M. J., & Sánchez-Escalante, A. (2014). Antimicrobial Activity of Commercial Propolis Extract in Beef Patties. Journal of Food Science, 79 (8), C1499-C1505. https://doi.org/10.1111/1750-3841.12533
Xing, C., Yuan, X., Wu, X., Shao, X., Yuan, J., & Yan, W. (2019). Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography. LWT - Food Science and Technology, 108, 437-445. https://doi.org/10.1016/j.lwt.2019.03.085
Zheng, Y., Wang, K., Wu, Y., Chen, Y., Chen, X., Hu, C. W., & Hu, F. (2018). Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Letters, 431, 31-42. https://doi.org/10.1016/j.canlet.2018.05.026
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.