ZnO nanoparticles impregnated with Hibiscus sabdariffa L. extract: Characterization and antimicrobial activity
SPA_pdf (Español (España))
ENG_pdf

Keywords

Zinc oxide
Hibiscus sabdariffa by-products
Ultrasound
antimicrobial

Métricas de PLUMX 

Abstract

Zinc oxide can be a vehicle for the encapsulation of bioactive compounds obtained from Hibiscus sabdariffa L by-products due to its mesoporous structure. The nanoparticles obtained with zinc nitrate showed an average particle size of 120 mn, when impregnated with ultrasound-assisted extract of Jamaican by-product did not show morphological alterations, however; it was observed that there is a modification of the ZnO energy bands attributed to the interactions between ZnO and the extract molecules. T1.0% and T1.5% presented higher inhibition on Listeria Monocytogenes, Staphylococcus aureus, Escherichia coli and Staphylococcus mutans compared to T0.5% and EUSJ. The results show that the synthesis process and the impregnation of Jamaican by-product extracts have interesting antibacterial properties associated with the potentiating effect of ZnO and extract, which can be a starting point for further studies on some applications or other types of microorganisms

https://doi.org/10.15741/revbio.10.e1473
SPA_pdf (Español (España))
ENG_pdf

References

Ahmadpoor-Dehkordi, E., Danesh-Shahraki, A., & Khosravi-Lamjiri, P. (2018). Effect of seed priming with salicylic acid on seed germination and seedling growth of Hibiscus sabdariffa under drought stress. Iranian Journal of Seed Sciences and Research, 5(4), 1-11. https://doi.org/10.22124/JMS.2018.2941

Beltrán-Debón, R., Alonso-Villaverde, C., Aragones, G., Rodriguez-Medina, I., Rull, A., Micol, V., Segura- Carretero, A., Fernández- Gutiérrez, A., Camps, J., & Joven, J. (2010). The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans. Phytomedicine, 17(3-4), 186-191. https://doi.org/10.1016/j.phymed.2009.08.006

Borrás-Linares, I., Fernández-Arroyo, S., Arráez-Roman, D., Palmeros-Suárez, P. A., Del Val-Díaz, R., Andrade-Gonzáles, I., & Segura-Carretero, A. (2015). Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 69, 385-394. https://doi.org/10.1016/j.indcrop.2015.02.053

Bouzid, H., Faisal, M., Harraz, F. A., Al-Sayari, S. A., & Ismail, A. A. (2015). Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity. Catalysis Today, 252, 20-26. https://doi.org/10.1016/j.cattod.2014.10.011

Di Mauro, A., Fragala, M. E., Privitera, V., & Impellizzeri, G. (2017). ZnO for application in photocatalysis: From thin films to nanostructures. Materials Science in Semiconductor Processing, 69, 44-51. https://doi.org/10.1016/j.mssp.2017.03.029

Duarte-Valenzuela, Z. N., Zamora-Gasga, V. M., Montalvo-González, E., & Sáyago-Ayerdi, S. G. (2016). Caracterización nutricional de 20 variedades mejoradas de jamaica (Hibiscus sabdariffa L.) cultivadas en México. Revista fitotecnia mexicana, 39(3), 199-206. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802016000300199

Gómez‐Aldapa, C. A., Portillo‐Torres, L. A., Villagómez‐Ibarra, J. R., Rangel‐Vargas, E., Téllez‐Jurado, A., Cruz‐Gálvez, A. M., & Castro‐Rosas, J. (2018). Survival of foodborne bacteria on strawberries and antibacterial activities of Hibiscus sabdariffa extracts and chemical sanitizers on strawberries. Journal of Food Safety, 38(1), e12378. https://doi.org/10.111/jfs.12378

Goñi, I., Díaz-Rubio, M. E., Pérez-Jiménez, J., & Saura-Calixto, F. (2009). Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Research International, 42(7), 840-846. https://doi.org/10.1016/j.foodres.2009.03.010

Guerrero, M., Vargas, C., Alarcón, E., del Sol, M., & Ottone, N. E. (2019). Desarrollo de un protocolo de plastinación de cortes con resina poliéster aplicado a secciones de cerebro humano. International Journal of Morphology, 37(4), 1557-1563. http://dx.doi.org/10.4067/S0717-95022019000401557

Hirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T., & Sugimoto, H. (2010). Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics International, 36(2), 497-506. https://doi.org/10.1016/j.ceramint.2009.09.02

Navidad-Murrieta, M. S., Pérez-Larios, A., Sanchéz-Burgos, J. A., Ragazzo-Sánchez, J. A., Luna-Bárcenas, G., & Sáyago-Ayerdi, S. G. (2020). Use of a taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods, 9(2), 128. https://doi.org/10.3390/foods9020128

Ochoa-Velasco, C. E., Salazar-González, C., Cid-Ortega, S., & Guerrero-Beltrán, J. A. (2017). Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. Journal of food science and technology, 54, 1747-1756. https://doi.org/10.1007/s13197-017-2564-1

Patel, S. (2014). Hibiscus sabdariffa: An ideal yet under-exploited candidate for nutraceutical applications. Biomedicine & Preventive Nutrition, 4(1), 23-27. https://doi.org/10.1016/j.bionut.2013.10.004

Pérez-Larios, A., Lopez, R., Hernandez-Gordillo, A., Tzompantzi, F., Gómez, R., & Torres-Guerra, L. M. (2012). Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts. Fuel, 100, 139-143. https://doi.org/10.1016/j.fuel.2012.02.026

Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2014). An improved ultrasound Clevenger for extraction of essential oils. Food analytical methods, 7, 9-12. https://doi.org/10.1007/s12161-013-9581-0

Razura-Carmona, F. F., Herrera-Martínez, M., Sáyago-Ayerdi, S. G., Pérez-Larios, A., Montalvo-González, E., Ramírez-Mares, M. V., & Sánchez-Burgos, J. A. (2022a). Nanoparticles of two ZnO precursors as an encapsulating matrix of mangiferin: associated studies to cytotoxic effects on liver cancer cells Hep-G2 and healthy lung cell Beas-2B. Journal of Cluster Science, 33(1), 163-171. https://doi.org/10.1007/s10876-020-01957-7

Razura-Carmona, F. F., Pérez-Larios, A., Herrera-Martínez, M., Bueno-Durán, A. Y., Sáyago-Ayerdi, S. G., & Sánchez-Burgos, J. A. (2022b). Zinc Oxide Nanoparticles with Mangiferin: Optical Properties, In Vitro Release Studies, and Antibacterial Activity. Revista Brasileira de Farmacognosia, 32(3), 447-454. https://doi.org/10.1007/s43450-022-00268-4

Razura-Carmona, F. F., Perez-Larios, A., Sáyago-Ayerdi, S. G., Herrera-Martínez, M., & Sánchez-Burgos, J. A. (2022c). Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. Polysaccharides, 3(2), 411-425. https://doi.org/10.3390/polysaccharides3020025

Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and microbial technology, 117, 91-95. https://doi.org/10.1016/j.enzmictec.2018.06.009

Robles‐Ozuna, L. E., & Ochoa‐Martínez, L. A. (2012). Ultrasonido y sus aplicaciones en el procesamiento de alimentos. Revista iberoamericana de tecnología postcosecha, 13(2), 109-122. https://www.redalyc.org/articulo.oa?id=81325441002

Rodríguez-Barajas, N., Becerra-Solano, L., Gutiérrez-Mercado, Y. K., Macías-Carballo, M., M. Gómez, C., & Pérez-Larios, A. (2022). Study of the Interaction of Ti–Zn as a Mixed Oxide at Different pH Values Synthesized by the Sol–Gel Method and Its Antibacterial Properties. Nanomaterials, 12(12), 1948. https://doi.org/10.3390/nano12121948

Rodríguez, Y. A., Rojas, A. F., & Rodríguez, S. (2016). Encapsulación de probióticos para aplicaciones alimenticias. Biosalud, 15(2), 106-115. https://doi.org/10.17151/biosa.2016.15.2.10

Rojas, T., Fuentes Campos, M. E., Contreras-López, E., Gómez, S., & Muñoz-Jáuregui, A. M. (2019). Extracción asistida por ultrasonido de compuestos fenólicos de la cáscara de sanky (Corryocactus brevistylus). Revista de la Sociedad Química del Perú, 85(2), 258-267. http://www.scielo.org.pe/scielo.php?pid=S1810-634X2019000200012&script=sci_arttext&tlng=pt

Saura-Calixto, F., & Díaz-Rubio, M. E. (2007). Polyphenols associated with dietary fibre in wine: a wine polyphenols gap?. Food Research International, 40(5), 613-619. https://doi.org/10.1016/j.foodres.2006.11.005

Sáyago-Ayerdi, S. G., & Goñi, I. (2010). Hibiscus sabdariffa L: Fuente de fibra antioxidante. Archivos latinoamericanos de nutrición, 60(1), 79-84. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222010000100012

Siddique, M. N., Ali, T., Ahmed, A., & Tripathi, P. (2018). Enhanced electrical and thermal properties of pure and Ni substituted ZnO Nanoparticles. Nano-Structures & Nano-Objects, 16, 156-166. https://doi.org/10.1016/j.nanoso.2018.06.001

Sindi, H. A., Marshall, L. J., & Morgan, M. R. (2014). Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food chemistry, 164, 23-29. https://doi.org/10.1016/j.foodchem.2014.04.097

Suárez, M., & Brito, C. (2020). Eficiencia de encapsulación y capacidad de carga de antocianinas de Vaccinium floribundim Kunt en nanopartículas de Zeina. infoANALÍTICA, 8(1), 83-97. https://doi.org/10.26807/ia.v8i1.98

Vitaglione, P., Napolitano, A., & Fogliano, V. (2008). Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends in food science & technology, 19(9), 451-463. https://doi.org/10.1016/j.tifs.2008.02.005

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.