Optimization of the enzymatic hydrolysis of starch in sugarcane juice (Saccharum spp hybrid).
SPA_pdf (Español (España))
ENG_pdf

Keywords

Alpha amylase
sugar industry
Bacillus licheniformis
productivity

Métricas de PLUMX 

Abstract

Starch, a natural component of sugarcane juice, is the cause of losses and operational problems in the sugar industry, due to the increase in juice viscosity, which inhibits crystallization and increases the loss of sucrose. The objective of this research was to optimize the process of enzymatic hydrolysis of starch by the action of alpha amylase from Bacillus licheniformis. The enzyme concentration and the reaction time were optimized, with respect to the maximization of the maltose concentration, determined as reducing sugar by the Dinitrosalicylic Acid method; the percentage of starch hydrolysis and productivity, which were analyzed independently and together by a Rotational Composite Central Design and the Response Surface Methodology.

The alpha-amylase enzyme was characterized, obtaining an optimum temperature of 90°C and an optimum pH of 7, determining a range of linearity for the 1:100 dilution of 20 minutes, an enzymatic activity of 28.35 U/mg and the kinetic constants Km of 5.82 g/L and Vmax of 0.30 g/L*min. Finally, from the experimental design, the optimal environmental conditions of enzyme concentration of 817 ppm and reaction time of 17 minutes at a temperature of 90°C were obtained. From the validation of the optimal conditions for starch hydrolysis in sugarcane juice, the following were obtained: maltose concentration 0.380 g/L, hydrolysis percentage 73.09 % and productivity 1.341 g/L*h, which corresponded to larger variations than the calculated values, at 16%, 11.3% and 18% respectively.

https://doi.org/10.15741/revbio.10.e1514
SPA_pdf (Español (España))
ENG_pdf

References

Baş, D., & Boyaci, I.H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024

Božić, N., Ruiz, J., Lopez-Santin, J., & Vujčić, Z. (2011). Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 53(2), 203–209. https://doi.org/10.1016/j.bej.2010.10.014

Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72 (1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Brooks, H., Geeganage, S., Kahl, S., Montrose, C., Sittampalam, S., Smith, M., & Weidner, J. (2012). Basics of Enzymatic Assays for HTS. En Sittampalam, G., Grossman, A., Brimacombe K, et al., (Ed.). Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences. https://www.ncbi.nlm.nih.gov/books/NBK92007/

Brumovsky, L. (2014). Química del almidón. Universidad Nacional de Misiones. Argentina.

Cole, M., Eggleston, G., Gilbert, A., & Chung, Y. J. (2016). Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products. Food Chemistry, 190, 50–59. https://doi.org/10.1016/j.foodchem.2015.05.049

Cole, M.R., Rose, I., Chung, Y.J., & Eggleston, G. (2015). A structured approach to target starch solubilisation and hydrolysis for the sugarcane industry. Food Chemistry, 166, 165–172. https://doi.org/10.1016/j.foodchem.2014.05.151

Derringer, G., & Suich, R. (1980). Simultaneous Optimization of Several Response Variable. Joul of Quality Technology, 12 (4), 214-219 https://doi.org/10.1080/00224065.1980.11980968

Eggleston, G. Montes, B. Monge, A., & Guidry, D. (2007). Optimization of amylase application in raw sugar manufacture. Part II: Factory trials. International Sugar Journal, 109(1305), 579–584. https://www.ars.usda.gov/research/publications/publication/?seqNo115=222996

FAO [FAOSTAT Statistical Database]. (2022) Licencia: CC BY-NC-SA 3.0 IGO. https://www.fao.org/faostat/en/#data/QCL/visualize.

Ferreira, S.J., Kossmann, J., Lloyd, J.R., & Groenewald, J.H. (2008). The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines. Biotechnology Journal, 3(11), 1398–1406. https://doi.org/10.1002/biot.200800106

Ferrer, C. (2014). Caracterización enzimática de la α-amilasa de la cepa termófila Bacillus Licheniformis bta-03 aislada de los geiseres de Calientes, candarave- Tacna, 2013 (Tesis pregrado). Universidad Nacional Jorge Basadre Grohmann, Perú.

Fincan, S. A., Özdemir, S., Karakaya, A., Enez, B., Mustafov, S. D., Ulutaş, M. S., & Şen, F. (2021). Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Life Sciences, 264, 118639. https://doi.org/10.1016/j.lfs.2020.118639

Figueira, J., Carvalho, P.H., & Sato, H.H. (2011). Sugarcane starch: quantitative determination and characterization. Ciência e Tecnologia de Alimentos, 31(3), 806-815. https://doi.org/10.1590/S0101-20612011000300040

Hossain, S., Haki, G., & Rakshit, S. (2006). Optimum Production and Characterization of Thermostable Amylolytic Enzymes from B. stearothermophilus GRE1. The Canadian Journal of Chemical Engineering, 84(8), 368 – 374. https://doi.org/10.1002/cjce.5450840313

Klasson, T., Cole, M., Pancio, B., & Heckemeyer, M. (2022) Development of an enzyme cocktail to bioconvert untapped starch in sweet sorghum processing by-products: Part II. Application and economic potential. Industrial Crops and Products, 176, 114370. https://doi.org/10.1016/j.indcrop.2021.114370

Li, Z., Wang, D., & Shi, Y.C. (2019). High-Solids Bio-Conversion of Maize Starch to Sugars and Ethanol. Starch, 71(1-2), 1800142. https://doi.org/10.1002/star.201800142

Lineweaver, H., & Burk, D. (1934). The Determination of Enzyme Dissociation Constants. Journal of American Chemical Society, 56(3), 658-666. https://doi.org/10.1021/ja01318a036

Lu, Y., Thomas, L., & Schmidt, S. (2017). Differences in the thermal behavior of beet and cane sucrose sources. Journal of Food Engineering, 201, 57-70. https://doi.org/10.1016/j.jfoodeng.2017.01.005

Martinez, J. (2005). Utilización de α-amilasas en la formulación de detergentes industriales (Tesis doctoral). Universidad de Granada, Granada.

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (1995). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York

Ministerio de Desarrollo Agrario y Riego [ MIDAGRI] (2022). Panorama mundial y nacional del azúcar ante variaciones de precios - nota técnica de coyuntura económica agraria (N.° 004-2022-MIDAGRI). https://cdn.www.gob.pe/uploads/document/file/3035139/Panorama%20del%20az%C3%BAcar%20ante%20variaciones%20de%20precios.pdf

Miller, G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030

Misra, V., Mall. A., Solomon, S., & Ansari, M. (2022). Post-harvest biology and recent advances of storage technologies in sugarcane, Biotechnology Reports, 33, e00705. https://doi.org/10.1016/j.btre.2022.e00705

Monteiro, P., & De Oliveira, P. (2010). Application of microbial α-amylase in industry – a review. Brazilian Journal of Microbiology, 41(4), 850-861. https://doi.org/10.1590/S1517-83822010000400004

Nascimento, W., & Verbi, F.M. (2019). Raw sugarcane classification in the presence of small solid impurity amounts using a simple and effective digital imaging system. Computers and Electronics in Agriculture, 156, 307–311. https://doi.org/10.1016/j.compag.2018.11.039

Norma Mexicana NMX-F-436-SCFI. (2011). Industria azucarera y alcoholera - Determinación de grados brix en jugos de especies vegetales productoras de azúcar y materiales azucarados - Método del refractómetro. http://www.economia-nmx.gob.mx/normas/nmx/2010/nmx-f-436-scfi-2011.pdf

Penados, M. (2004). Evaluación del impacto de adicionar la enzima alfa amilasa durante el proceso de evaporación en los niveles de almidón de azúcar crudo producido en un ingenio azucarero. (Tesis de pregrado). Universidad de San Carlos de Guatemala. Guatemala.

Peña, A. (2009). Hidrolisis del almidón de yuca mediante la utilización de preparaciones solubles e insolubilizadas de alfa-amilasa. (Tesis de pregrado). Universidad industrial de Santander. Colombia.

Prompiputtanapon, K., Sorndech, W., & Tongta, S. (2020). Surface Modification of Tapioca Starch by Using the Chemical and Enzymatic Method. Starch, 72(3-4), 1900133. https://doi.org/10.1002/star.201900133

Quintero, J.A., Dávila, J.A., Moncada, J., Giraldo, O.H., & Cardona, C.A. (2016). Analysis and characterization of starchy and cellulosic materials after enzymatic modification. DYNA, 83(197), 44-51. https://doi.org/10.15446/dyna.v83n197.42729

Rajesh, R., & Gummadi, S. (2021). α-Amylase and cellulase production by novel halotolerant Bacillus sp.PM06 isolated from sugarcane pressmud. Biotechnology and Applied Biochemistry, 69(1), 149-159. https://doi.org/10.1002/bab.2091

Saptadip, S., Arpan, D., Suman, K., Arijit, J., Sanjay, K., Pradeep, K., Bikash, R., & Keshab, C. (2014). Thermodynamic and kinetic characteristics of an α-amylase from Bacillus licheniformis SKB4. Acta Biologica Szegediensis, 58, 147-156.

Sirohi, R., Pandey, J.P. Goel, R., Singh, A., Lohani, U.C., & Kumar, A. (2021). Two-Stage Enzymatic Hydrolysis for Fermentable Sugars Production from Damaged Wheat Grain Starch with Sequential Process Optimization and Reaction Kinetics. Starch, 73(1-2), 2000082.https://doi.org/10.1002/star.202000082

Viginotti, F., Polesi, L.F., Aguiar, C.L., & Silveira, S.B. (2014). Structural and physicochemical characteristics of starch from sugarcane and sweet sorghum stalks. Carbohydrate Polymers 111, 592–597. https://doi.org/10.1016/j.carbpol.2014.05.034

Zhou, M. M., Kimbeng, C. A., Egglest, G., Viator, R. P., Hale, A. L., & Gravois, K. A. (2008). Issues of starch in sugarcane processing and prospects of breeding for low starch content in sugarcane. Sugar Cane International, 26(3), 3–17. https://pubag.nal.usda.gov/catalog/48898.

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.