Evaluation of the antibacterial activity of the skin mucus of the common octopus Octopus bimaculatus against pathogenic bacteria of farm animals
SPA_pdf (Español (España))
ENG_pdf

Keywords

Cephalopods, Protein, Inhibition, Antibacterials.
Cephalopods
Protein
Inhibition
Antibacterials

Métricas de PLUMX 

Abstract

Studies were conducted to evaluate the antimicrobial potential of skin mucus collected from the common octopus Octopus bimaculatus against certain pathogenic strains for crustaceans, mollusks, fish, and cattle; Escherichia coli, Staphylococcus aureus, Vibrio harveyi, Vibrio parahaemolyticus, and Staphylococcus pasteuri. Antimicrobial activities were measured in terms of inhibition zones in mm and compared with two antibiotics, amikacin and chloramphenicol. The amount of protein in octopus mucus was also estimated in mg ml-1. Inhibition zones were observed at all three concentrations of mucus against the selected pathogens, except for the V. parahaemolyticus strain, which showed no inhibition at the minimum concentration. Furthermore, at the highest concentration, the V. parahaemolyticus strain exhibited the least inhibition, with a diameter of 3.9 ± 0.2 mm. Both antibiotics inhibited all strains, with the E. coli strain being the most inhibited. Therefore, these results have revealed that mucus obtained from octopus skin displays antibacterial activity that could play an important role in protecting aquatic or terrestrial organisms against pathogens. Consequently, mucus obtained from Octopus skin as an antimicrobial alternative in land and aquaculture farm animals.

https://doi.org/10.15741/revbio.11.e1521
SPA_pdf (Español (España))
ENG_pdf

References

Accogli, G., Scillitani, G., Mentino, D., & Desantis, S. (2017). Characterization of the skin mucus in the common octopus Octopus vulgaris (Cuvier) reared paralarvae. European Journal of Histochemistry: EJH, 61(3).https://doi.org/10.4081/ejh.2017.2815

Amador, M. S. (2018). Estudio de la interacción de larvas véliger de ostión Crassostrea gigas con una bacteria probiótica y otra patógena a través de ensayos in vivo. (Tesis de maestría, Universidad Autónoma de Baja California Sur). http://rep.uabcs.mx/handle/23080/83

Amador, M. S. (2021). Análisis transcriptómico de larvas de ostión japonés Crassostrea gigas alimentadas con microalgas locales administradas con un probiótico y retadas con un patógeno regional. (Tesis de doctorado, Universidad Autónoma de Baja California Sur).

http://rep.uabcs.mx/handle/23080/385

Anadón, R. (2019). Functional histology: The tissues of common coleoid cephalopods. In: C. Gestal, S. Pascual, A. Guerra, G. Fiorito, & J. M. Vieites (Eds). (2019). Handbook of pathogens and diseases in European cephalopods (pp. 39–86). Cham, Switzerland: Springer (Open access). https://doi.org/10.1007/978-3-030-11330-8_4.

Arulvasu,C., Selvamathi S., Babu G., & Dhanasekaran, G. (2012). Effect of crude and partially purified epidermal mucus proteins of marine catfish Tachysurus dussumieri on human cancer cell line. Journal of Academia and Industrial Research 1(4), 164–169. http://www.jairjp.com/SEPTEMBER%202012/04%20ARULVASU.pdf

Barbosa H.R., Rodrigues M.F.A., Campos C.C., Chaves M.E., Nunes I., Juliano & Novo, N.F. (1995). Counting of viable cluster-forming and non cluster-forming bacteria: a comparison between the drop and the spread methods. Journal Microbiological Methods, 22, 39–50. https://doi.org/10.1016/0167-7012(94)00062-C

Benkendorff, K., Davis., A. R. & Bremner, J. B. (2001). Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. Journal Invertebrate Pathology, 78(2), 109-118. https://doi.org/10.1006/jipa.2001.5047

Bragadeeswaran, S., & Thangaraj, S. (2011). Hemolytic and antibacterial studies on skin mucus of eel fish, Anguilla anguilla Linnaues, 1758. Asian Journal of Biological Sciences, 4(3), 272-276. https://doi.org/10.3923/ajbs.2011.272.276

Burniston S., Okello A.L., Khamlome B., Inthavong P., Gilbert J., Blacksell S.D., Allen J., & Welburn, S.C. (2015). Cultural drivers and health-seeking behaviours that impact on the transmission of pig-associated zoonoses in Lao People’s Democratic Republic. Infectious Diseases of Poverty, 4, 1-12. https://doi.org/10.1186/2049-9957-4-11

Chong K., Ying T.S, Foou J., Jin L.T., & Chong, A. (2005). Characterization of proteins in epidermal mucus of Discus fish (Symphosodon spp.) during parental phase. Aquaculture, 249(1-4), 469–476. https://doi.org/10.1016/j.aquaculture.2005.02.045

Coelho, G. R., Neto, P. P., Barbosa, F. C., Dos Santos, R. S., Brigatte, P., Spencer, P. J., Coccuzzo Sampaio, S., D’Amelio, F., Carvalho Pimenta, D., & Mozer Sciani, J. (2019). Biochemical and biological characterization of the Hypanus americanus mucus: a perspective on stingray immunity and toxins. Fish Shellfish Immunology, 93, 832–840. https://doi.org/10.1016/j.fsi.2019.08.049

de Lorgeril, J., Lucasson, A., Petton, B., Toulza, E., Montagnani, C., Clerissi, C., VidalDupiol, J., Chaparro, C., Galinier, R., Escoubas, J.-M., Haffner, P., Dégremont, L., Charriére, G.M., Lafont, M., Delort, A., Vergnes, A., Chiarello, M., Faury, N., Rubio, T., Leroy, M.A., Pérignon, A., Régler, D., Morga, B., Alunno-Bruscia, M., Boudry, P., Le Roux, F., Destoumieux-Garzόn, D., Gueguen., & Mitta, G. (2018). Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nature Communications, 9, 4215. https://doi.org/10.1038/s41467-018-06659-3

Deng, Y., Xu, L., Chen, H., Liu, S., Guo, Z., Cheng, C., Ma, H., & Feng, J. (2020). Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China, Scientific Reports, 10,14329. https://doi.org/10.1038/s41598-020-71288-0

Di Costanzo, F., Di Dato, V., Ianora, A., & Romano, G. (2019). Prostaglandins in marine organisms: A review. Marine Drugs, 17(7), 428.https://doi.org/10.3390/md17070428

Eder F.A., Kennedy J.M., Beth A.D., Notari P.E., Seate R, Bachousin L., Mair D.G., Swebb J.S, Wagner J.S., Doddy R., & Banjamin, R.J. (2009). Limiting and detecting bacterial contamination of apheresis platelets: inlet line diversion and increased culture volume improve component safety. Tranfusion, 49(8),1554–1563. https://doi.org/10.1111/j.1537-2995.2009.02192.x

FAO (2011). Manual básico de Sanidad Piscicola. Paraguay: FAO. http:// www.fao.org/3/a-as830s.pdf

Fast, M. D., Sims, D. E., Burka, J. F., Mustafa, A., & Ross, N. W. (2002). Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(3), 645–657. https://doi.org/10.1016/S1095-6433(02)00109-5

Fuochi, V., Li Volti, G., Camiolo, G., Tiralongo, F., Giallongo, C., Distefano, A., Petronio, G,P., Barbagallo,I., Viola, M., Furneri, P.M., Di rosa, M., Avaloa, R., & Tibullo, D. (2017). Antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758). Marine Drugs, 15 (11), 342. https://doi.org/10.3390/md15110342

Giraldo-Cardona J.P., Gualdrón-Ramírez D., Chamorro-Tobar I., Pulido-Villamarín A., Santamaría-Durán N., Castañeda-Salazar R., Zambrano Moreno C., & Carrascal-Camacho, A.K. (2019). Salmonella spp. prevalence, antimicrobial resistance and risk factor determination in colombian swine farms. Pesquisa Veterinaria Brasileira, 39 (10), 816- 822. https://doi.org/10.1590/1678-5150-PVB-6156

González‐Costa, A., Fernández‐Gago, R., Carid, S., & Molist, P. (2020). Mucus characterisation in the Octopus vulgaris skin throughout its life cycle. Anatomia, Histologia, Embryologia, 49(4), 502-510.https://doi.org/10.1111/ahe.12554

Guerra, N. P., & Pastrana, L. (2002). Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Process Biochemistry, 37(9), 1005-1015. https://doi.org/10.1016/S0032-9592(01)00312-0

Hubert, F., van der Knaap, W., Noël, T., & Roch, P. (1996). Cytotoxic and antibacterial properties of Mytilus galloprovincialis, Ostrea edulis and Crassostrea gigas (bivalve molluscs) hemolymph. Aquat Living Resour, 9(2), 115-124. https://doi.org/10.1051/alr:1996015

Lauritano, C., & Ianora, A. (2020). Chemical defense in marine organisms. Marine drugs, 18(10), 518. https://doi.org/10.3390/md18100518

Lauritano, C., Martínez, K. A., Battaglia, P., Granata, A., de la Cruz, M., Cautain, B., Martin, J., Reyes, F., Lanora, A., & Guglielmo, L. (2020). First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Scientific Reports, 10(1), 4929.https://doi.org/10.1038/s41598-020-61515-z

Im., W. & Khalid, S. (2020). Molecular simulations of Gramnegative bacterial membranes come of age. Annual Reviews Physical Chemistry, 71, 171-188. https://doi.org/10.1146/annurev-physchem-103019-033434

Jorgensen J., & Turnidge J (2015). Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In: Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (eds) Manual of clinical microbiology, 11th edn. ASM Press, Washington, DC, pp 1253–1273. https://doi.org/10.1128/9781555817381.ch7.1

Kamiya H., Sakai R., & Jimbo M. (2006) Bioactive molecules from sea hares. In Molluscs: Progress in Molecular and Subcellular Biology; Cimino, G., Gavagnin, M., Eds. Springer, Berlin/Heidelberg, Germany, 2006; Volume 43, (pp. 215–239). https://doi.org/10.1007/978-3-540-30880-5_10

Kruger, N. J. (2009). The Bradford method for protein quantitation. The protein protocols handbook; Springer: Berlin/Heidelberg, Germany, pp. 17–24. https://doi.org/10.1007/978-1-59745-198-7_4

Kumari, S., Tyor, A. K., & Bhatnagar, A. (2019). Evaluation of the antibacterial activity of skin mucus of three carp species. International Aquatic Research, 11(3), 225-239. https://doi.org/10.1007/s40071-019-0231-z

Maselli, V., Galdiero, E., Salzano, A. M., Scaloni, A., Maione, A., Falanga, A., Naviglio, D., Guida, M., Di Cosmo, A., & Galdiero, S. (2020). OctoPartenopin: Identification and preliminary characterization of a novel antimicrobial peptide from the suckers of Octopus vulgaris. Marine drugs, 18(8), 380.https://doi.org/10.3390/md18080380

Monolisha, S., Mani, A. E., Patterson, J., Edward, J. P. (2013). Molecular characterization and antimicrobial activity of Octopus aegina and Octopus dolfusii in gulf of Mannar coast. International Journal of Pharmaceutical Sciences and Research, 4(9), 3582. http://dx.doi.org/10.13040/IJPSR.0975-8232.4(9).3582-87

Nwabueze, A. A. (2014). Antimicrobial action of epidermal mucus extract of clarias gariepinus (Burchell, 1822) Juveniles-Fed ginger inclusion in diet. International Journal of Biology, 6(2) 42–48. https://doi.org/10.5539/ijb.v6n2p42

OIE (Office International des Epizooties), (2019). Acute Hepatopancreatic Necrosis Disease. Manual of Diagnostic Tests for Aquatic Animals, chapter 2.2.1. Retrieved from https://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_ahpnd.htm Date of access: 11 jul. 2023.

Pales Espinosa, E., Winnicki, S.M., Allam, B. (2013). Early host-pathogen interactions in marine bivalves: Pallial mucus of Crassostrea virginica modulates the growth and virulence of its pathogen Perkinsus marinus. Diseases of Aquatic Organisms, 104(3), 237–247, https://doi.org/10.3354/dao02599

Palomares Reséndiz, G., Aguilar Romero, F., Flores Pérez, C., Gómez Núñez, L., Gutiérrez Hernández, J., Herrera López, E., Limón González, M., Morales Álvarez, F., Pastor López c, F., & Díaz Aparicio, E. (2021). Enfermedades infecciosas de relevancia en la producción caprina, historia, retos y perspectivas. Revista mexicana de ciencias pecuarias, 12 (3), 205-223. https://doi.org/10.22319/rmcp.v12s3.5801

Pandey A. (2019). Pharmacological Potential of Marine Microbes. In: Arora D, Sharma C, Jaglan S, Lichtfouse E, editors. Pharmaceuticals from Microbes. Environmental Chemistry for a Sustaintable World. Vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-04675-0_1

Parera-Valadez, Y. (2012). identificación y actividad antibacteriana de bacterias (doctoral dissertation, Tesis de Licenciatura. Universidad Autónoma de Baja California Sur, México). https://biblio.uabcs.mx/tesis/tesis/te2826.pdf

Pasiyappazham, R., Namasivayam, S., Alagiri, S., Vairamani, S., Jayalakshmi, K., & Annaian, S. (2011). In vitro evaluation of antimicrobial activity of methanolic extract from selected species of Cephalopods on clinical isolates. African Journal of Microbiology Research, 5(23), 3884-3889. https://doi.org/10.5897/AJMR11.564

Pethkar, M. R., and Lokhande, M. V. (2017). Antifungal activity of skin mucus of three cultivable fish species (Catla-catla, cirrhinus mrigala and anguilla anguilla). International Journal of Zoology Studies, 2, 01–03. ISSN: 2455-7269.

Prachumwat, A., Wechprasit, P., Srisala, J., Kriangsaksri, R., Flegel, T. W., Thitamadee, S., & Sritunyalucksana, K. (2020). Shewanella khirikhana sp. nov.–a shrimp pathogen isolated from a cultivation pond exhibiting early mortality syndrome. Microbial biotechnology, 13(3), 781-795. https://doi.org/10.1111/1751-7915.13538

Pulido-Villamarín AP, Santamaría-Durán AN, Castañeda-Salazar R, Chamorro-Tobar I, Carrascal Camacho AK, Aranda-Silva M, & Zambrano-Moreno, C. (2021). Evaluación de anticuerpos frente a tres bacterias zoonóticas y factores de riesgo asociados en explotaciones porcinas de Colombia. Revue Scientifique Technique, OIE 39(3). https://doi.org/10.20506/rst.39.3.3188

Rajapaksha, D. C., Jayathilaka, E. T., Edirisinghe, S. L., Nikapitiya, C., Lee, J., Whang, I., & De Zoysa, M. (2021). Octopromycin: Antibacterial and antibiofilm functions of a novel peptide derived from Octopus minor against multidrug-resistant Acinetobacter baumannii. Fish & Shellfish Immunology, 117, 82-94. https://doi.org/10.1016/j.fsi.2021.07.019

Rao, V., Marimuthu, K., Kupusamy, T., Rathinam, X., Arasu, M.V., Al-Dhabi, N.A., & Arockiaraj, j.(2015). Defense properties in the epidermal mucus of different freshwater fish species. Aquaculture, Aquarium, Conservation & Legislation - International Journal of the Bioflux Society, 8(2),184–194.

Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2018). Biological and ecological roles of external fish mucus: a review. Fishes, 3(4), 41. https://doi.org/10.3390/fishes3040041

Ritchie, K. B., Schwarz, M., Mueller, J., Lapacek, V. A., Merselis, D., Walsh, C. J., & Luer, C.A. (2017). Survey of antibiotic-producing bacteria associated with the epidermal mucus layers of rays and skates. Frontiers Microbiology, 8, 1050. https://doi.org/10.3389/fmicb.2017.01050

Monolisha, S., Mani, A. E., Patterson, J., & Edward, J. P. (2013). Molecular characterization and antimicrobial activity of Octopus aegina and Octopus dolfusii in gulf of Mannar coast. International Journal of Pharmaceutical Sciences and Research, 4, 3582-3587.

Rivera-Benitez J.F, Rosas-Estrada K, Pulido-Camarillo E, De la Peña Moctezuma A, Castillo-Juárez H, Ramírez-Mendoza, H. (2014). Serological survey of veterinarians to assess the zoonotic potential of three emerging swine diseases in Mexico. Zoonoses and Public Health, 61 (2), 131-137. https://doi.org/10.1111/zph.12055

Rögener, W., Renwrantz, L., & Uhlenbruck, G. (1987). Analysis of Octopus vulgaris hemolymph containing a glycoprotein with blood group A-like properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 86(2), 347-351. https://doi.org/10.1016/0305-0491(87)90304-X

Smith, A. M. (2002). The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology, 42(6), 1164–1171. https://doi.org/10.1093/icb/42.6.1164

Smith, A. M., & Morin, M. C. (2002). Biochemical differences between trail mucus and adhesive mucus from marsh periwinkle snails. The Biological Bulletin, 203(3), 338-346. https://doi.org/10.2307/1543576

Sokal, R. & Rohlf, J. 1980. Introducción a la bioestadística. De Reverte S.A., Barcelon.

Stabili L., Schirosi R., Parisi MG., Piraino S., & Cammarata, M. (2015) The mucus of Actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Marine Drugs, 13(8), 5276–5296. https://doi.org/10.3390/md13085276

Suárez, L., Pereira, A., Hidalgo, W., & Uribe, N. (2021). Antibacterial, Antibiofilm and Anti-Virulence Activity of Biactive Fractions from Mucus Secretion of Giant African Snail Achatina fulica against Staphylococcus aureus Strains. Antibiotics, 10(12), 1548. https://doi.org/10.3390/antibiotics10121548

Subramanian B., Sangappellai T., Rajak R.C., & Diraviam, B. (2011). Pharmacological and biomedical properties of sea anemones Paracondactylis indicus, Paracondactylis sinensis, Heteractis magnifica and Stichodactyla haddoni from East coast of India. Asian Pacific Journal of Tropical Medecine, 4(9),722–726. https://doi.org/10.1016/S1995-7645(11)60181-8

Troll, J. V., Bent, E. H., Pacquette, N., Wier, A. M., Goldman, W. E., Silverman, N., & McFall‐Ngai, M. J. (2010). Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environmental microbiology, 12(8), 2190-2203. https://doi.org/10.1111/j.1462-2920.2009.02121.x

Valgas C., De-Souza S.M., Smania E.F.A., Smania, Jr.A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38(2), 369–380. https://doi.org/10.1590/S1517-83822007000200034

Vennila R., Kumar K.R., Kanchana S., Arumugam M., Vijayalakshmi S., Balasubramaniam, T. (2011). Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pacific Journal of Tropical Biomedicine, 1(2), S239-S243. https://doi.org/10.1016/S2221-1691(11)60162-7

Villanueva, R., Coll-Lladó, M., Bonnaud-Ponticelli, L., Carrasco, S. A., Escolar, O., Fernández-Álvarez, F. Á., Gleadall, I.G., Nabhitabhata, J., Ortiz, N., Rosas, C., Sánchez, P., Voight, J.R., & Swoger, J. (2021). Born With Bristles: New Insights on the Kölliker’s Organs of Octopus Skin. Frontiers in Marine Science, 8, 645738. https://doi.org/10.3389/fmars.2021.645738

Wei, O. Y., Xavier, R., & Marimuthu, K. (2010). Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). European review for medical and pharmacological sciences, 14(10), 675-681. PMID: 20707287.

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.