Abstract
The endocarp of Opuntia oligacantha (xoconostle Ulapa) is composed of seeds and mucilage, and is considered a residue. The objective of this article is to describe the endocarp flour of Opuntia oligacantha for the food area. Opuntia oligacantha flour is obtained by dehydration and milling, subsequently characterized through physicochemical, nutritional, technological properties and antioxidant capacity. The results show that the flour has a low acidic pH (4.1 ± 0.05), humidity (7.51 ± 0.22) and aw (0.31 ± 0.00). L*=53.67 ± 0.71; red, a*=10.00 ± 0.31and yellow, b*= 14.55 ± 2.27 giving a red-brown color. Low amount of fat (6.61 ± 0.04%) and high amount of dietary fiber (76.46 ± 1.25%). High value of water solubility index, activity and emulsion stability (21.82 ± 2.99%, 65.12 ± 1.03%) and 99.42 ± 0.99% respectively; and low oil absorption (0.149 ± 0.21 mL/g). This flour has a significant antioxidant activity (40.75-53.32%) for FRAP, ABTS and DPPH tests. Opuntia oligacantha endocarp flour could be recommended in foods that require modifying their texture because it is able to absorb water and fat.
References
Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioactive Carbohydrates and Dietary Fibre, 4(1), 16-26. https://doi.org/10.1016/j.bcdf.2014.06.001
Acevedo, B. A., Avanza, M. V., Cháves, M. G., & Ronda, F. (2013). Gelation, thermal and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours. Journal of Food Engineering, 119(1), 65-71.https://doi.org/10.1016/j.jfoodeng.2013.05.014
Amadi, B. A., Njoku, U. C., Amadi, P. U., Agomuo, E. N., Ezendiokwere, O. E., & Nwauche, K. T. (2017). Assessment of vitamins, protein quality and mineral bioavailability of matured stems of Opuntia dillenii grown in Nigeria. Bioengineering and Bioscience, 5(3), 47-54. https://doi.org/10.13189/bb.2017.050302
Amaya-Cruz, D. M., Perez-Ramirez, I. F., Ortega-Diaz, D., Rodriguez-Garcia, M. E., & Reynoso-Camacho, R. (2018). Roselle (Hibiscus sabdariffa) by-product as functional ingredient: effect of thermal processing and particle size reduction on bioactive constituents and functional, morphological, and structural properties. Journal of Food Measurement and Characterization, 12(1), 135-144. https://doi.org/10.1007/s11694-017-9624-0
Apak, R., Özyürek, M., Güçlü, K. & Çapanoğlu, E. (2016). Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027. https://doi.org/10.1021/acs.jafc.5b04739
Association of Official Agricultural Chemists [AOAC]. (1975). Official methods of analysis (Vol. 222). Washington, DC: Association of Official Analytical Chemists.
Arias-Rico, J., Cruz-Cansino, N. D. S., Cámara-Hurtado, M., López-Froilán, R., Pérez-Rodríguez, M. L., Sánchez-Mata, M. D. C., Jaramillo-Morales, O., Barrera-Gálvez, R., & Ramírez-Moreno, E. (2020). Study of xoconostle (Opuntia spp.) powder as source of dietary fiber and antioxidants. Foods, 9(4), 403. https://doi.org/10.3390/foods9040403
Asouzu, A. I., Oly-Alawuba, N. M., & Umerah, N. N. (2020). Functional Properties and Chemical Composition of Composite Flour Made from Cooking Banana (Musa Paradisiaca) and Yellow Maize (Zea Mays). Research Journal of Food and Nutrition, 4(2), 6-12. https://www.researchgate.net/profile/Nkemjika-Umerah/publication/341769201_Functional_Properties_and_Chemical_Composition_of_Composite_Flour_Made_from_Cooking_Banana_Musa_Paradisiaca_and_Yellow_Maize_Zea_Mays/links/5ed30d98299bf1c67d2cafa9/Functional-Properties-and-Chemical-Composition-of-Composite-Flour-Made-from-Cooking-Banana-Musa-Paradisiaca-and-Yellow-Maize-Zea-Mays.pdf
Ayadi, M. A., Abdelmaksoud, W., Ennouri, M., & Attia, H. (2009). Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Industrial Crops and Products, 30(1), 40-47. https://doi.org/10.1016/j.indcrop.2009.01.003
Bashir, N., Sood, M., & Bandral, J. D. (2020). Impact of different drying methods on proximate and mineral composition of oyster mushroom (Pleurotus florida). Indian Journal of Traditional Knowledge (IJTK), 19(3), 656-661. http://op.niscpr.res.in/index.php/IJTK/article/view/41440
Batu, W., Getahun, D., & Abreha, G. (2018). Physicochemical and Functional Properties of Cactus ‘Opuntia ficus-indica L.’Muller Flour: The Case of Cactus Fruit and Vegetable Flour. Journal of Science and Sustainable Development, 6(1), 51-70. https://doi.org/10.20372/au.jssd.6.1.2018.082
Benzie, I. F., & Devaki, M. (2018). The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: concepts, procedures, limitations and applications. Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, 77-106. https://doi.org/10.1002/9781119135388.ch5
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Bodner, J. M., & Sieg, J. (2009). Fiber. In Ingredients in meat products (pp. 83-109). Springer, New York, NY. https://doi.org/10.1007/978-0-387-71327-4_4
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Çekiç, S. D., Başkan, K. S., Tütem, E., & Apak, R. (2009). Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols. Talanta, 79(2), 344-351. https://doi.org/10.1016/j.talanta.2009.03.061
Cenobio-Galindo, A. D. J., Díaz-Monroy, G., Medina-Pérez, G., Franco-Fernández, M. J., Ludeña-Urquizo, F. E., Vieyra-Alberto, R., & Campos-Montiel, R. G. (2019). Multiple emulsions with extracts of cactus pear added in a yogurt: Antioxidant activity, in vitro simulated digestion and shelf life. Foods, 8(10), 429. https://doi.org/10.3390/foods8100429
Coimbra, P.P.S., Silva-E-Silva, A.C.A.G.D., Antonio, A.D.S., Pereira, H.M.G., Veiga-Junior, V.F.D., Felzenszwalb, I., Araujo-Lima, C.F., & Teodoro, A.J. (2023). Antioxidant Capacity, Antitumor Activity and Metabolomic Profile of a Beetroot Peel Flour. Metabolites, 13(2), 277. https://doi.org/10.3390/metabo13020277
Cota-Sánchez, J. H. (2016). Nutritional composition of the prickly pear (Opuntia ficus-indica) fruit. In Nutritional composition of fruit cultivars (pp. 691-712). Academic Press. https://doi.org/10.1016/B978-0-12-408117-8.00028-3
Dávila-Hernández, G., Sánchez-Pardo, M. E., Gutiérrez-López, G. F., Necoechea-Mondragon, H., & Ortiz-Moreno, A. (2019). Effect of microwave pretreatment on bioactive compounds extraction from Xoconostle (Opuntia joconostle) by-products, Revista Mexicana de Ingeniería Química, 18(1), 191-204. https://pdfs.semanticscholar.org/2e04/a7ef696d042255bf6d651bade3f911659df5.pdf
Das, A. K., Nanda, P. K., Madane, P., Biswas, S., Das, A., Zhang, W., & Lorenzo, J. M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99, 323-336. https://doi.org/10.1016/j.tifs.2020.03.010
De Andrade Vieira, É., Alcântara, M. A., Dos Santos, N. A., Gondim, A. D., Iacomini, M., Mellinger, C., & de Magalhães Cordeiro, A. M. T. (2021). Mucilages of cacti from Brazilian biodiversity: extraction, physicochemical and technological properties. Food Chemistry, 346, 128892. https://doi.org/10.1016/j.foodchem.2020.128892
Deli, M., Petit, J., Nguimbou, R. M., Beaudelaire Djantou, E., Njintang Yanou, N., & Scher, J. (2019). Effect of sieved fractionation on the physical, flow and hydration properties of Boscia senegalensis Lam., Dichostachys glomerata Forssk. and Hibiscus sabdariffa L. powders. Food science and biotechnology, 28(5), 1375-1389. https://doi.org/10.1007/s10068-019-00597-6
Dibacto, R.E.K., Tchuente, B.R.T., Nguedjo, M.W., Tientcheu, Y.M.T., Nyobe, E.C., Edoun, F.L.E., Kamini, M.F.G., Dibanda, R.F., & Medoua, G.N. (2021). Total Polyphenol and Flavonoid Content and Antioxidant Capacity of Some Varieties of Persea americana Peels Consumed in Cameroon. ScientificWorldJournal, 2021, 8882594. https://doi.org/10.1155/2021/8882594
Dick, M., Limberger, C., Thys, R. C. S., de Oliveira Rios, A., & Flôres, S. H. (2020). Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. Food Chemistry, 314, 126178. https://doi.org/10.1016/j.foodchem.2020.126178
Du Toit, A., De Wit, M., Fouché, H. J., Taljaard, M., Venter, S. L., & Hugo, A. (2019). Mucilage powder from cactus pears as functional ingredient: influence of cultivar and harvest month on the physicochemical and technological properties. Journal of food science and technology, 56(5), 2404-2416. https://doi.org/10.1007/s13197-019-03706-9
Fernández-Luqueño, F., Medina-Pérez, G., Pérez-Soto, E., Espino-Manzano, S., Peralta-Adauto, L., Pérez-Ríos, S., & Campos-Montiel, R. (2021). Bioactive Compounds of Opuntia spp. Acid Fruits: Micro and Nano-Emulsified Extracts and Applications in Nutraceutical Foods. Molecules, 26(21), 6429. https://doi.org/10.3390/molecules26216429
Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of food composition and analysis, 24(7), 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008
Griffin, S. P., & Bhagooli, R. (2004). Measuring antioxidant potential in corals using the FRAP assay. Journal of Experimental Marine Biology and Ecology, 302(2), 201-211. https://doi.org/10.1016/j.jembe.2003.10.008
Guimarães, R. M., Ida, E. I., Falcao, H. G., de Rezende, T. A. M., de Santana Silva, J., Alves, C. C. F., Pereira, M. A., & Egea, M. B. (2020). Evaluating technological quality of okara flours obtained by different drying processes. LWT, 123, 109062. https://doi.org/10.1016/j.lwt.2020.109062
Guzmán‐Maldonado, S. H., Morales‐Montelongo, A. L., Mondragón‐Jacobo, C., Herrera‐Hernández, G., Guevara‐Lara, F., & Reynoso‐Camacho, R. (2010). Physicochemical, nutritional, and functional characterization of fruits xoconostle (Opuntia matudae) pears from Central‐México Region. Journal of Food Science, 75(6), C485-C492. https://doi.org/10.1111/j.1750-3841.2010.01679.x
Hernández-Fuentes, A. D., Trapala-Islas, A., Gallegos-Vásquez, C., Campos-Montiel, R. G., Pinedo-Espinoza, J. M., & Guzmán-Maldonado, S. H. (2015). Physicochemical variability and nutritional and functional characteristics of xoconostles (Opuntia spp.) accessions from Mexico. Fruits, 70(2), 109-116. https://doi.org/10.1051/fruits/2015002
Kalegowda, P., Chauhan, A. S., & Urs, S. M. N. (2017). Opuntia dillenii (Ker-Gawl) Haw cladode mucilage: Physico-chemical, rheological and functional behavior. Carbohydrate Polymers, 157, 1057-1064. https://doi.org/10.1016/j.carbpol.2016.10.070
Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food chemistry, 91(3), 403-411. https://doi.org/10.1016/j.jfoodeng.2004.09.002
Keyata, E. O., Tola, Y. B., Bultosa, G., & Forsido, S. F. (2020). Proximate, mineral, and anti-nutrient compositions of underutilized plants of Ethiopia: Figl (Raphanus sativus L.), Girgir (Eruca sativa L) and Karkade (Hibiscus sabdariffa): Implications for in-vitro mineral bioavailability. Food Research International, 137, 109724. https://doi.org/10.1016/j.foodres.2020.109724
Lopera-Cardona, S., Gallardo, C., Umaña-Gallego, J., & Gil, L. M. (2016). Comparative study of the physicochemical, compositional and functional properties of eight flours obtained from different plant materials found in Colombia. Food Science and Technology International, 22(8), 699-707. https://doi.org/10.1177/1082013216642611
López-Cervantes, J., Sánchez-Machado, D. I., Campas-Baypoli, O. N., & Bueno-Solano, C. (2011). Functional properties and proximate composition of cactus pear cladodes flours. Food Science and Technology, 31, 654-659. https://doi.org/10.1590/S0101-20612011000300016
Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. International Journal of Molecular Sciences, 22(9), 4945. https://doi.org/10.3390/ijms22094945
Maray, A. R., Mostafa, M. K., & El‐Fakhrany, A. E. D. M. (2018). Effect of pretreatments and drying methods on physico‐chemical, sensory characteristics and nutritional value of oyster mushroom. Journal of Food Processing and Preservation, 42(1), e13352. https://doi.org/10.1111/jfpp.13352
Medina, E. D., Rodríguez, E. R., & Romero, C. D. (2007). Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food chemistry, 103(1), 38-45. https://doi.org/10.1016/j.foodchem.2006.06.064
Medina-Pérez, G., Estefes-Duarte, J. A., Afanador-Barajas, L. N., Fernández-Luqueño, F., Zepeda-Velázquez, A. P., Franco-Fernández, M. J., & Campos-Montiel, R. G. (2020). Encapsulation preserves antioxidant and antidiabetic activities of cactus acid fruit bioactive compounds under simulated digestion conditions. Molecules, 25(23), 5736. https://doi.org/10.3390/molecules25235736
Medina-Pérez, G., Zaldívar-Ortega, A. K., Cenobio-Galindo, A. D. J., Afanador-Barajas, L. N., Vieyra-Alberto, R., Estefes-Duarte, J. A., & Campos-Montiel, R. G. (2019). Antidiabetic activity of cactus acid fruit extracts: simulated intestinal conditions of the inhibitory effects on α-amylase and α-glucosidase. Applied Sciences, 9(19), 4066. https://doi.org/10.3390/app9194066
Merenkova, S. P., Zinina, O. V., Stuart, M., Okuskhanova, E. K., & Androsova, N. V. (2020). Effects of dietary fiber on human health: A review. Человек. Спорт. Медицина, 20(1), 106-113. https://cyberleninka.ru/article/n/effects-of-dietary-fiber-on-human-health-a-review
Monteiro, G. C., Minatel, I. O., Junior, A. P., Gómez-Gómez, H. A., de Camargo, J. P. C., Diamante, M. S., ... & Lima, G. P. P. (2021). Bioactive compounds and antioxidant capacity of grape pomace flours. LWT, 135, 110053. https://doi.org/10.1016/j.lwt.2020.110053
Morales, P., Ramírez-Moreno, E., de Cortes Sanchez-Mata, M., Carvalho, A. M., & Ferreira, I. C. (2012). Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle FAC Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Research International, 46(1), 279-285. https://doi.org/10.1016/j.foodres.2011.12.031
Morales, P., Barros, L., Ramírez-Moreno, E., Santos-Buelga, C., & Ferreira, I. C. (2014). Exploring xoconostle by-products as sources of bioactive compounds. Food Research International, 65, 437-444. https://doi.org/10.1016/j.foodres.2014.05.067
Morales, P.; Barros, L.; Ramírez-Moreno, E.; Santos-Buelga, C.; Ferreira, I.C. (2015) Xoconostle fruit (Opuntia matudae Scheinvar cv.Rosa) by-products as potential functional ingredients. Food Chem. 185, 289–297. https://doi.org/10.1016/j.foodchem.2015.04.012
Morales-Tapia, A. A., González-Jiménez, F. E., Vivar-Vera, G., Del Ángel-Zumaya, J. A., Reyes-Reyes, M., Alamilla-Beltrán, L., ... & Jiménez-Guzmán, J. (2022). Use of freeze-drying and convection as drying methods of the xoconostle by-product and the effect on its antioxidant properties. Revista Mexicana De Ingeniería Química, 21(2), Alim2692-Alim2692.https://doi.org/10.24275/rmiq/Alim2692
Programa Stargraphics Centurion XVI 16.1.03 (32 bits) (2009). https://www.statgraphics.com/download-statgraphics-centurion-xvi
Quintero-García, M., Gutiérrez-Cortez, E., Bah, M., Rojas-Molina, A., Cornejo-Villegas, M. D. L. A., Del Real, A., & Rojas-Molina, I. (2021). Comparative analysis of the chemical composition and physicochemical properties of the mucilage extracted from fresh and dehydrated Opuntia ficus indica cladodes. Foods, 10(9), 2137.https://doi.org/10.3390/foods10092137
Sáenz Hernández, C. L., Berger, H., Rodríguez-Félix, A., Galletti, L., Corrales García, J., Sepúlveda, E., ... & Rosell, C. (2013). Agro-industrial utilization of cactus pear. https://repositorio.uchile.cl/handle/2250/186304
Servicio de Información Agroalimentaria y Pesquera. (2018, june 23). Boletín de exportaciones. México. https://www.gob.mx/cms/uploads/attachment/file/334107/Junio__tuna_y_xoconostle__2018.pdf
Sutton, B. G., Ting, I. P., & Sutton, R. (1981). Carbohydrate metabolism of cactus in a desert environment. Plant Physiology, 68(3), 784-787. https://doi.org/10.1104/pp.68.3.784
Talens Oliag, P. (2017). Caracterización de las propiedades mecánicas de alimentos mediante análisis de perfil de textura. https://riunet.upv.es/handle/10251/83513
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7), 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
Vázquez-Ovando, A., Mejía-Reyes, J.D., García-Cabrera, K.E., & Velázquez-Ovalle, G. (2022). Capacidad antioxidante: conceptos, métodos de cuantificación y su aplicación en la caracterización de frutos tropicales y productos derivados. Revista colombiana de Investigaciones Agroindustriales, 9(1), 9-33. https://doi.org/10.23850/24220582.4023
Ventura‐Aguilar, R. I., Bosquez‐Molina, E., Bautista‐Baños, S., & Rivera‐Cabrera, F. (2017). Cactus stem (Opuntia ficus‐indica Mill): Anatomy, physiology and chemical composition with emphasis on its biofunctional properties. Journal of the Science of Food and Agriculture, 97(15), 5065-5073. https://doi.org/10.1002/jsfa.8493
Yang, X., Dai, J., Zhong, Y., Wei, X., Wu, M., Zhang, Y., ... & Xiao, H. (2021). Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects. Food & Function, 12(14), 6576-6587. https://doi.org/10.1039/D1FO00521A
Yang, C. S., Ho, C. T., Zhang, J., Wan, X., Zhang, K., & Lim, J. (2018). Antioxidants: Differing meanings in food science and health science. Journal of agricultural and food chemistry, 66(12), 3063-3068. https://doi.org/10.1021/acs.jafc.7b05830
Zarate-Diego, L. M., Méndez-Zamora, G., Alba, R. D., Abigail, J., & Flores-Girón, E. (2021). Efecto del nopal (Opuntia spp) deshidratado en polvo sobre las propiedades fisicoquímicas y sensoriales de salchichas Viena. Biotecnia, 23(2), 89-95. https://doi.org/10.18633/biotecnia.v23i2.1377
Zepeda, L. C., Méndez, G. C., de la Caza, L. G., Vela, J. D., & Chabela, M. D. L. P. (2009). Utilización de subproductos agroindustriales como fuente de fibra para productos cárnicos. Nacameh, 3(2), 71-82. https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=utilizacion+de+subproductos+agroindustriales+como+fuente+de+fibra+para+productos+carnicos+chavez&btnG=
Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers, 248, 116819. https://doi.org/10.1016/j.carbpol.2020.116819

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.