Estimation of genetic parameters for reproductive traits in multibreed cattle under tropical conditions
SPA_pdf (Español (España))
ENG_pdf

Keywords

Reproductive traits
heritability
genetic correlations
beef cattle
animal model

Métricas de PLUMX 

Abstract

The estimation of genetic parameters is essential to guarantee the success of breeding programs since they allow developing adequate selection criteria and predicting correlated responses. The objective of the study was to estimate heritability and genetic correlations for gestation length (GL), calving interval (CI), days to first postpartum service (FPS), age at first service (AFS) and services per conception (SC) in a multiracial herd under tropical conditions. Data were analyzed with univariate and bivariate animal models in MTDFREML to obtain covariance components. The heritabilities estimated using the univariate models were 0.00, 0.02, 0.03, 0.10, 0.25, 0.29, for EPS, DA, NSC, IEP, DPS and DG, respectively. The heritabilities obtained using the bivariate models were 0.12, 0.27, 0.08, 0.26, 0.30 and 0.46, for EPS, DA, NSC, IEP, DPS, DG, respectively. The estimated genetic correlations were 1.00, 1.00, 0.90, 0.97, 0.79, 0.70, 0.99, -1.00, -0.59, -0.47, -0.36, -0.40, -0.15, -0.06 and -0. 05 for IEP-DA, IEP-EPS, DPS-IEP, DPS-DA, DPS-EPS, DG-EPS, DA-EPS, NSC-EPS, DG-IEP, DPS-NSC, DG-NSC, IEP-NSC, DG-DA, SPD-DG and NSC-DA, respectively. The heritability for DG, DPS and IEP represents an opportunity to improve them through a selection program, while for EPS, DA and NSC the values were close to zero. The genetic correlations between reproductive traits make it feasible to propose genetic improvement programs that can consider the different traits studied simultaneously.

https://doi.org/10.15741/revbio.12.e1604
SPA_pdf (Español (España))
ENG_pdf

References

Akanno, E. C., Schenkel, F. S., Quinton, V. M., Friendship, R. M., & Robinson, J. A. B. (2013). Meta-analysis of genetic parameter estimates for reproduction, growth and carcass traits of pigs in the tropics. Livestock Science, 152(2–3), 101–113. https://doi.org/10.1016/j.livsci.2012.07.021

Ali, I., Muhammad Suhail, S., & Shafiq, M. (2019). Heritability estimates and genetic correlations of various production and reproductive traits of different grades of dairy cattle reared under subtropical condition. Reproduction in Domestic Animals, 54(7), 1026–1033. https://doi.org/10.1111/rda.13458

Amaya, M., Martínez, S., & Cerón-muñoz, M. (2020). Parámetros genéticos para crecimiento y reproducción en ganado Simmental mediante parentesco por pedigrí y genómico. Revista MVZ Córdoba, 25(1), 51–58. https://doi.org/10.21897/rmvz.1520

Akbas, Y., Brotherstone, S., & Hill, W. G. (1993). Animal model estimation of non-additive genetic parameters in dairy cattle, and their effect on heritability estimation and breeding value prediction. Journal of Animal Breeding And Genetics. 110(1–6), 105–113. https://doi.org/https://doi.org/10.1111/j.1439-0388.1993.tb00721.x

Boldman, K. G., Kriese, L. A., Van Vleck, L. D.-, Van Tassell, C. P., & Kachman, S. D. (1995). A manual for use of MTD-FREML: A set of programs to obtain estimates of vari-ances and covariances [Draft]. Washington (DC): ARS, USDA.

Casanova-Lugo, F., Villanueva-López, G., Alcudia-Aguilar, A., Nahed-Toral, J., Medrano-Pérez, O. R, Jiménez-Ferrer, G., Alayón-Gamboa, J. A. & Raj Aryal, D. (2022). Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangeland Ecology & Management, 80, 31-38. https://doi.org/10.1016/j.rama.2021.09.006

Cavani, L., Garcia, D. A., Carreño, L. O. D., Ono, R. K., Pires, M. P., Farah, M. M., Ventura, H. T., Millen, D. D., & Fonseca, R. (2015). Estimates of genetic parameters for reproductive traits in Brahman cattle breed. Journal of Animal Science, 93(7), 3287–3291. https://doi.org/10.2527/jas.2015-8970

Dodenhoff, J., Van Vleck, L. D., Kachman, S.D., & Koch, R. M. (1998). Parameter estimates for direct, maternal, and grandmaternal genetic effects for birth weight and weaning weight in Hereford cattle. Journal of Animal Science, 76(10),2521-2527. https://doi.org/10.2527/1998.76102521x

Domínguez-castaño, P., Toro-Ospina, A., El Faro, L., & Vasconcelos-Silva, J. (2021). Genetic principal components for reproductive and productive traits in Holstein cows reared under tropical conditions. Tropical Animal Health and Production, 53,193. https://doi.org/https://doi.org/10.1007/s11250-021-02639-w

Duitama, O.C., González, L. H., Garcia, D., Farah, M., & Da Fonseca, R. (2013). Productividad acumulada y su relación genética con características reproductivas en hembras brahman. Revista MVZ Cordoba, 18(SUPPL.), 3658–3664. https://doi.org/10.21897/rmvz.132

Easa, A. A., El-Aziz, A. H. A., Barbary, A. S. A. E., Kostomakhin, N. M., Nasr, M. A. F., & Imbabi, T. A. (2022). Genetic parameters of production and reproduction traits of Egyptian buffaloes under subtropical conditions. Tropical Animal Health and Production, 54(5). https://doi.org/10.1007/s11250-022-03251-2

Eler, J. P., Bignardi, A. B., Ferraz, J. B. S., & Santana, J. L. (2014). Genetic relationships among traits related to reproduction. And growth of Nelore females. Theriogenology, 82(5), 708–714. https://doi.org/10.1016/j.theriogenology.2014.06.001

Fernandes Júnior, G. A., Silva, D. A., Mota, L. F. M., de Melo, T. P., Fonseca, L. F. S., Silva, D. B. d. S., Carvalheiro, R., & Albuquerque, L. G. (2022). Sustainable intensification of beef production in the tropics: the role of genetically improving sexual precocity of heifers. Animal, 12(2),174. https://doi.org/10.3390/ani12020174

Fernandes, A. F. A., Neves, H. H. R., Carvalheiro, R., Oliveira, J. A., & Queiroz, S. A. (2015). Body condition score of Nellore beef cows: A heritable measure to improve the selection of reproductive and maternal traits. Animal, 9(8), 1278–1284. https://doi.org/10.1017/S1751731115000154

Fleming, A., Baes, C. F., Martin, A. A. A., Chud, T. C. S., Malchiodi, F., Brito, L. F., & Miglior, F. (2019). Symposium review: The choice and collection of new relevant phenotypes for fertility selection. Journal of Dairy Science, 102(4), 3722–3734. https://doi.org/10.3168/jds.2018-15470

García, E. (1998). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México. México. 59-75. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1

Gathura, D. M., Muasya, T. K., & Kahi, A. K. (2020). Meta-analysis of genetic parameters for traits of economic importance for beef cattle in the tropics. Livestock Science, 242, 104306. https://doi.org/10.1016/j.livsci.2020.104306

Gebeyehu, G., Harpal, S., Karl-J, P., & Nils, L. (2014). Heritability and correlation among first lactation traits in Holstein Friesian cows at Holeta Bull Dam Station, Ethiopia. International Journal of Livestock Production, 5(3):47-53. https://doi.org/10.5897/IJLP2013.0165

Heise, J., Stock, K. F., Reinhardt, F., Ha, N. T., & Simianer, H. (2018). Phenotypic and genetic relationships between age at first calving, its component traits, and survival of heifers up to second calving. Journal of Dairy Science, 101(1), 425–432. https://doi.org/10.3168/jds.2017-12957

Inoue, K., Hosono, M., Oyama, H., & Hiroyuki, H. (2020). Genetic associations between reproductive traits for first calving and growth curve characteristics of Japanese Black cattle. Animal Science Journal, 91(e13467), 1–8. https://doi.org/10.1111/asj.13467

Johnson, D. L. & Thompson, R. (1995). Restricted maximum likelihood estimation of variance components for uni-variate animal models using sparse matrix techniques and average information. Journal of Dairy Science, 78(2),449-456. https://doi.org/10.3168/jds.S0022-0302(95)76654-1

Johnston, D. J. (2014). Genetic improvement of reproduction in Beef Cattle. Proceedings, 10th World Congress on Genetics Applied to Livestock Production. Vancouver, BC, Canada, 17-22 August. https://www.researchgate.net/publication/268110361_Genetic_Improvement_of_Reproduction_in_Beef_Cattle/citations

Júnior, R. J. F., Bonilha, S. F. M., Monteiro, F. M., Cyrillo, J. N. S. G., Branco, R. H., Silva, J. A. V., & Mercadante, M. E. Z. (2018). Evidence of negative relationship between female fertility and feed efficiency in Nellore cattle. Journal of Animal Science, 96(10), 4035–4044. https://doi.org/10.1093/jas/sky276

König, S., & May, K. (2019). Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance and resilience associated traits in dairy cattle. Animal, 13(5), 897–908. https://doi.org/10.1017/S1751731118003208

Kumar, A., Mandal, A., Gupta, A. K., & Ratwan, P. (2016). Genetic and environmental causes of variation in gestation length of Jersey crossbred cattle. Veterinary World, 9(4), 351–355. https://doi.org/10.14202/vetworld.2016.351-355

Kumar, A., & Mandal, A. (2021). Evaluation of animal models to explore the influence of maternal genetic and maternal permanent environment effect on reproductive performance of Jersey crossbred cattle. Reproduction in Domestic Animals, 56(3), 511–518. https://doi.org/10.1111/rda.13889

Liu, A., Lund, M.S., Wang, Y., Guo, G., Dong, G., Madsen, P., & Su, G. (2017). Variance components and correlations of female fertility traits in Chinese Holstein population. Journal of Animal Science and Biotechnology, 8, 56. https://doi.org/10.1186/s40104-017-0189-x

López, B. I., Son, J. H., Seo, K., & Lim, D. (2019). Estimation of genetic parameters for reproductive traits in Hanwoo (Korean Cattle). Animals, 9(10), 1–7. https://doi.org/10.3390/ani9100715

Martin, A. A. A., de Oliveira G Jr., Madureira, A. M. L., Miglior, F., Leblanc, S. J., Cerri, R. L. A., Baes, C. F., & Schenkel, F. S. (2022). Reproductive tract size and position score: Estimation of genetic parameters for a novel fertility trait in dairy cows. Journal of Dairy Science, 105(10), 8189–8198. https://doi.org/10.3168/jds.2021-21651

Martínez-Castillero, M., Toledo-Alvarado, H., Pegolo, S., Vazquez, A. I., de los Campos, G., Varona, L., Finocchiaro, R., Bittante, G., & Cecchinato, A. (2020). Genetic parameters for fertility traits assessed in herds divergent in milk energy output in Holstein-Friesian, Brown Swiss, and Simmental cattle. Journal of Dairy Science, 103(12), 11545–11558. https://doi.org/https://doi.org/10.3168/jds.2020-18934

Miglior, F., Fleming, A., Malchiodi, F., Brito, L. F., Martin, P., & Baes, C. F. (2017). A 100-Year Review : Identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science, 100(12), 10251–10271. https://doi.org/10.3168/jds.2017-12968

Missanjo, E., Imbayarwo-Chikosi, V., & Halimani, T. (2013). Estimation of genetic and phenotypic parameters for production traits and somatic cell count for jersey dairy cattle in zimbabwe. ISRN Veterinary Science, 11,470585. https://doi.org/10.1155/2013/470585

Mueller, M. L., & Eenennaam, A. L. V. (2022). Synergistic power of genomic selection assisted reproductive technologies and gene editing to drive genetic improvement of cattle. CABI Agriculture and Bioscience, 3(13). https://doi.org/10.1186/s43170-022-00080-z

Muuttoranta, K., Tyrisevä, A. M., Mäntysaari, E. A., Pösö, J., Aamand, G. P., & Lidauer, M. H. (2019). Genetic parameters for female fertility in Nordic Holstein and Red Cattle dairy breeds. Journal of Dairy Science, 102(9), 8184–8196. https://doi.org/10.3168/jds.2018-15858

Ndung’u, C. W., Okeno, T. O., & Muasya, T. K. (2020). Pooled parameter estimates for traits of economic importance in indigenous chicken in the tropics. Livestock Science, 239(May), 104102. https://doi.org/10.1016/j.livsci.2020.104102

Oliveira, J. G. A., Schenkel, F. S., Alcantara, L., Houlahan, K., Lynch, C., & Baes, C. F. (2021). Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. Journal of Dairy Science, 104(8), 9002–9015. https://doi.org/10.3168/jds.2021-20227

Palacios, E. A., Espinoza, V. J. L., & Menéndez, B. A. (2019). Parámetros genéticos para peso al destete y rasgos reproductivos en ganado cebú de Cuba. Nova Scientia, 11(22), 1–25. https://doi.org/10.21640/ns.v11i22.1672

Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Hydrology and Earth System Sciences Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Pérez-Lombardini, F., Mancera, K. F., Suzán, G., Campo, J., Solorio, J., & Galindo, F. (2021). Assessing sustainability in cattle silvopastoral systems in the Mexican tropics using the SAFA framework. Animals, 11(1),109. https://doi.org/https://doi.org/10.3390/ani11010109

Rameez, R., Jahageerdar, S., Jayaraman, J., Chanu, T. I., Bangera, R., & Gilmour, A. (2022). Evaluation of alternative methods for estimating the precision of REML-based estimates of variance components and heritability. Heredity, 128(4), 197–208. https://doi.org/10.1038/s41437-022-00509-1

Recinos, C. A., Ibáñez, E. M. A., Arce, M. M. O., Garduño, R. G., Díaz Rivera, P., & Cuellar, J. A. H. (2017). Productive and reproductive parameters in dual-purpose Zebu x Holstein cattle in Tabasco, Mexico. Revista Mexicana de Ciencias Pecuarias, 8(1), 83–91. https://doi.org/10.22319/rmcp.v8i1.4347

Ríos-Utrera, Á., Hernández-Hernández, V. D., Villagómez Amezcua-Manjarréz, E., & Zárate-Martínez, J. P. (2013). Heredabilidad de características reproductivas de vacas Indubrasil. Agronomía Mesoamericana, 24(2), 293-300. https://doi.org/10.15517/am.v24i2.12529

Román-Ponce, S.I., Ruiz-López, F.J., Montaldo, V.H.H., Rizzi, Román-Ponce, H. (2013). Efectos de cruzamiento para producción de leche y características de crecimiento en bovinos de doble propósito en el trópico húmedo. Revista Mexicana de Ciencias Pecuarias, 4(4),405-416.

https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/view/3197

Roy, I., Rahman, M., Karunakaran, M., Gayari, I., Baneh, H., & Mandal, A. (2024). Genetic relationships between reproductive and production traits in Jersey crossbred cattle. Gene, 894(147982). https://doi.org/https://doi.org/10.1016/j.gene.2023.147982

SAS, 2007. SAS OnlineDoc 9.1.3. SAS Institute Inc., Cary, NC, USA. https://www.sas.com/es_mx/home.html

Smith, S. P., & Graser, H. U. (1986). Estimating variance components in a class of mixed models by restricted maximum likelihood. Journal of Dairy Science, 69(4),1156-1165. https://doi.org/10.3168/jds.S0022-0302(86)80516-1

Solemani‐Baghshah, S., Ansari‐Mahyari, S., Edriss, M. A., & Nanaei, H. A. (2014). Estimation of genetic and phonotypic trends for age at first calving, calving interval, days open and number of insemination to conception for Isfahan Holstein cows. International Journal of Advanced Biological and Biomedical Research, 2(5), 1307–1314. http://www.ijabbr.com

Stevenson, J. S., & Britt, J. H. (2017). A 100-Year Review : Practical female reproductive management. Journal of Dairy Science, 100(12), 10292–10313. https://doi.org/10.3168/jds.2017-12959

Sullivan, M. O., Butler, S. T., Pierce, K. M., Crowe, M. A., Sullivan, K. O., & Fitzgerald, R. (2020). Reproductive efficiency and survival of Holstein-Friesian cows of divergent economic breeding index, evaluated under seasonal calving pasture-based management. Journal of Dairy Science, 103(2), 1685–1700. https://doi.org/10.3168/jds.2019-17374

Thai, H. T., Mentré, F., Holford, N. H. G., Veyrat-Follet, C., & Comets, E. (2013). A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models. Pharmaceutical Statistics, 12(3), 129–140. https://doi.org/10.1002/pst.1561

Worku, D., Ravi, G. R. G., Pooja, K., Gupta, J. I. D., & Verma, A. (2021). Estimation of genetic parameters for production and reproductive traits in Indian Karan-Fries cattle using multi -trait Bayesian approach. Tropical Animal Health and Production, 53(369), 1–9. https://doi.org/10.1007/s11250-021-02806-z

Þórarinsdóttir, Þ., Eriksson, S., & Albertsdóttir, E. (2021). Genetic parameters and genetic trends of female fertility in Icelandic dairy cattle. Livestock Science, 251. https://doi.org/10.1016/j.livsci.2021.104628

Valsalan, J., Sadan, T., Anilkumar, K., & Aravindakshan, T.V. (2022). Estimation of co-variance components and genetic parameters of fertility and production traits in crossbred cattle of Kerala. Theriogenology, 181, 126-130. https://doi.org/10.1016/j.theriogenology.2022.01.004

Walsh, B., & Lynch, M. (2018). Evolution and selection of quantitative traits. Oxford Uni-versity Press. https://doi.org/10.1093/oso/9780198830870.001.0001

Zhang, J., & Schumacher, F. R. (2021). Evaluating the estimation of genetic correlation and heritability using summary statistics. Molecular Genetics and Genomics, 296(6), 1221–1234. https://doi.org/10.1007/s00438-021-01817-7

Zhu, K., Li, T., Liu, D., Wang, S., Wang, S., Wang, Q., Pan, Y., Zan, L., & Ma, P. (2024). Estimation of genetic parameters for fertility traits in Chinese Holstein of south China. Frontiers in Genetics, 14, 1288375. https://doi.org/10.3389/fgene.2023.1288375

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.