Development of single-cross maize hybrids with different parent selection strategies
SPA_pdf (Español (España))
ENG_pdf

Keywords

Zea mays L.
Crossing
Hybridization
Molecular markers
Breeding methods
Genotypic methods

Métricas de PLUMX 

Abstract

The success of a hybrid-breeding program depends on the correct selection of parents and the efficient use of genotypic methods. The objective was to evaluate the efficiency of molecular markers in comparison to two traditional breeding methods. Sixty-three single corn hybrids derived from the three selection strategies and seven commercial controls were evaluated under a 10 × 10 lattice design with three replications at two locations in Tamaulipas. The study variables were the agronomic and yield parameters of the experimental hybrids. A combined analysis of variance and orthogonal contrasts were performed with the means of the hybrids obtained. Differences were detected in all variables between genotypes and environments, however, in the genotype × environment interaction only in number of rows, ear diameter, days to male and female flowering. Hybrids with yields greater than 9 t ha-1 were P3097, P3092, 30F53 and LEARB9 × UAY113, the latter obtained using the molecular marker strategy with greater genetic distance between line pairs. Orthogonal contrasts showed differences for the molecular method vs. evaluation of lines per se and general combining ability by crossbreeding test in yield, ear diameter, plant and ear height; likewise, significance was detected in the per se method vs. crossbreeding in plant and ear height. Microsatellites revealed useful information to be used as auxiliary tools in traditional hybridization programs.

https://doi.org/10.15741/revbio.11.e1607
SPA_pdf (Español (España))
ENG_pdf

References

Acevedo-Cortés, M. A., Castillo-Gutiérrez, A., Andrade-Rodríguez, M., Núñez-Valdez, M. E., Perdomo-Roldan, F., & Suárez-Rodríguez, R. (2020). Aptitud combinatoria y potencial agronómico de líneas de maíz con diferente nivel de endogamia. Acta Agrícola y Pecuaria, 6(1). https://doi.org/10.30973/aap/2020.6.0061023

Azofeita-Delgado, A. (2006). Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana, 17(2), 221-242. https://doi.org/10.15517/am.v17i2.5163

Beyene, Y., Gowda, M., Olsen, M., Robbins, K. R., Pérez-Rodríguez, P., Alvarado, G., Dreher, K., Gao, S. Y., Mugo, S., Prasanna, B. M. & Crossa, J. (2019). Empirical comparison of tropical maize hybrids selected through genomic and phenotypic selections. Frontiers in Plant Science, 10, 1502. https://doi.org/10.3389/fpls.2019.01502

Buenrostro-Robles, M., Lobato-Ortiz, R., García-Zavala. J. J., & Sánchez-Abarca, C. (2017). Rendimiento de líneas de maíz exótico irradiado con rayos gamma y de híbridos de cruza simple. Revista Fitotecnia Mexicana, 40(3), 351-358. https://doi.org/10.35196/rfm.2017.3.351-358

Cervantes-Adame, Y. F., Rebolloza-Hernández, H., Broa-Rojas, E., Olvera-Velona, A., & Bahena-Delgado, G. (2020). Efecto de heterosis en poblaciones nativas de maíz y sus cruzas F1. Biotecnia, 22(3),11-19. https://doi.org/10.18633/biotecnia.v22i3.992

CIMMYT, Centro Internacional de Mejoramiento de Maíz y Trigo. (2006). Protocolos de Laboratorio. Laboratorio de Genética Molecular Aplicada. Tercera edición. CIMMYT. México D. F. 92 p.

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueños, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., & Varshney, R. K. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 22(11), 961-975. https://doi.org/10.1016/j.tplants.2017.08.011

Ferdoush, A., Haque, M. A., Rashid, M. M., & Bari, M. A. A. (2017). Variability and traits association in maize (Zea mays L.) for yield and yield associated characters. In Journal of Bangladesh Agricultural University, 15(2), 193-198. https://doi.org/10.3329/jbau.v15i2.35062

Guillén-de la Cruz, P., De la Cruz-Lázaro, E., Castañón-Nájera, G., Osorio-Osorio, R., Brito-Manzano, N. P., Lozano-del Río, A., & López-Noverola, U. (2009). Aptitud combinatoria general y específica de germoplasma tropical de maíz. Tropical and Subtropical Agroecosystems, 10(1), 101-107. https://www.redalyc.org/pdf/939/93911243010.pdfv

Larièpe, A., Moreau, L., Laborde, J., Bauland, C., Mezmouk, S., Décousset, L., Mary-Huard, T., Fiévet, J. B., Gallais, A., Dubreuil, P., & Charcosset, A. (2017). General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: Relative importance of population structure and genetic divergence between parents. Theoretical and Applied Genetics, 130, 403-417. https://doi.org/10.1007/s00122-016-2822-z

Marcón, F., Martínez, E. J., Rodríguez, G. R., Zilli, A. L., Brugnoli, E. A., & Acuña, C. A. (2019). Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids. Molecular Breeding, 39, 1-13. https://doi.org/10.1007/s11032-019-0994-3

Miklas, P. N., Kelly, J. D., Beebe, S. D., & Blair, M. W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 147:105-131. https://doi.org/10.1007/s10681-006-4600-5

Mwangangi, I. M., Muli, J. K., & Neondo, J. O. (2019). Plant hybridization as an alternative technique in plant breeding improvement. Asian Journal of Research in Crop Science, 4(1), 1-11. https://doi.org/10.9734/AJRCS/2019/v4i130059

Ni, J., Colowit, P. M., & Mackill D. J. (2002). Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science, 42(2):601-607. https://doi.org/10.2135/cropsci2002.6010

Nyaga, C., Gowda, M., Beyene, Y., Murithi, W. T., Burgueno, J., Toledo, F., Makumbi, D., Olsen, M. S., Das, B., M, S. L., Bright, J. M., & Prasanna, B. M. (2020). Hybrid breeding for MLN resistance: heterosis, combining ability, and hybrid prediction. Plants, 9(4), 468. https://doi.org/10.3390/plants9040468

Ramírez-Díaz, J. L., Vidal-Martínez, V. A., Alemán-de-la-Torre, I., Ledesma-Miramontes, A., Gómez-Montiel, N. O., Salinas-Moreno, Y., Bautista-Ramírez, E., Tapia-Vargas, L. M., & Ruiz-Corral, A. (2019). Selección de líneas y cruzas de maíz combinando las pruebas de mestizos y cruzas dialélicas. Revista Fitotecnia Mexicana, 42 (4), 335-346. https://doi.org/10.35196/rfm.2019.4.335-346

Rebolledo, R. H. H. (2002). Manual SAS por Computadora: Análisis Estadístico de Datos Experimentales. Trillas. México, D. F. 208 p.

Reyes, M. C. A., Cantú, A. M. A., De la Garza, C. M., Vázquez, C. G., & Córdova, O. H. (2009). H-443A, Híbrido de maíz de grano amarillo para el noreste de México. Revista Fitotecnia Mexicana, 32(4), 331-333. https://doi.org/10.35196/rfm.2009.4.331

Rodríguez, P. G., Treviño, R. J., Ojeda, Z. M., Cervantes, O. F., Ávila, P. M. A., & Gámez, V. A. (2020). Parámetros genéticos y aptitud combinatoria de líneas de maíz para grano. Revista Mexicana de Ciencias Agrícolas, 11(8), 1867-1878. https://doi.org/https://doi.org/10.29312/remexca.v11i8.2085

Rohlf, F. J. (2009). NTSYSpc: Numerical Taxonomy System. Ver. 2.21c. Exeter Software: Setauket: New York.

Sánchez-Ramírez, F. J., Mendoza-Castillo, M. C., & Mendoza-Mendoza, C. G. (2020). Evaluación de mestizos y uso de técnicas multivariadas para identificar líneas sobresalientes de maíz. Revista Mexicana de Ciencias Agrícolas, 11(2), 433-439. https://doi.org/10.29312/remexca.v11i2.1778

SAS Institute Inc. 2011. SAS/STAT® 9.4 User’s Guide. SAS Institute Inc. Cary, North Carolina, USA. 8640 p.

Singh, G., Kumar, R., & Jasmine. (2017). Genetic parameters and character association study for yield traits in maize (Zea mays L.). Journal of Pharmacognosy and Phytochemistry, 6(5), 808-813. https://www.phytojournal.com/archives/2017/vol6issue5/PartL/6-5-14-319.pdf

SIAP (Servicio de Información Agroalimentaria y Pesquera). (2020). Anuario Estadístico de la Producción Agrícola. Secretaría de Agricultura y Desarrollo Rural. Ciudad de México. https://nube.siap.gob.mx/cierreagricola/ (Enero 2021).

Technow, F., Schrag, T. A., Schipprack, W., Bauer, E., Simianer, H., & Melchinger, A. E. (2014). Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics, 197(4), 1343-1355. https://doi.org/10.1534/genetics.114.165860

Tomkowiak, A., Bocianowski, J., Kwiatek, M., & Kowalczewski, P. L. (2020). Dependence of the heterosis effect on genetic distance, determined using various molecular markers. Open Life Sciences, 15(1), 1-11. https://doi.org/10.1515/biol-2020-0001

Velázquez-Cárdelas, G. A., González-Huerta, A., Pérez-López, D. J., & Castillo-González, F. (2018). Comportamiento de mestizos de maíz en tres localidades del centro de México. Revista Mexicana de Ciencias Agrícola, 9(6), 1217-1230. https://doi.org/10.29312/remexca.v9i6.1586

Vélez-Torres, M., García-Zavala, J. J., Lobato-Ortiz, R., Benítez-Riquelme, I., López-Reynoso, J. J., Mejía-Contreras, J. A., & Esquivel-Esquivel, G. (2018). Estabilidad del rendimiento de cruzas dialélicas entre líneas de maíz de alta y baja aptitud combinatoria general. Revista Fitotecnia Mexicana, 41(2), 167-175. https://doi.org/10.35196/rfm.2018.2.167-175

Wright, S. (1978). Evolution and the Genetic of Populations. Vol. 4. Variability Within and Among Natural Populations. University of Chicago Press. Chicago, USA. 590 p.

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.