Abstract
In the gene pool of wild tomato populations, natural defenses represent an alternative to generate resistant or tolerant varieties to insects. The objective of this study was to evaluate the incidence of Bemisia tabaci and its relationship with antioxidant compounds in tomato germplasm. Two wild species (Solanum habrochaites and S. pimpinellifolium) were examined; eight Mexican natives and the Rio Grande variety (control). In a non-choice trial, the number of nymphs (Ni) and eggs (Hu) was recorded. The content of phenolic compounds (Cf) and the antioxidant activity DPPH (Aaox) were analyzed by spectrophotometry in plants with incidence (CI) and without incidence (SI) of B. tabaci. There were differences between genotypes in Ni + Hu (p < 0.004) and Cf (p < 0.0001). Differences from SI to CI in Cf (p < 0.0001) and in Aaox (p <0.0001) indicate variations in the modulation of antioxidant compounds between genotypes. The correlations of Ni + Hu with Aaox (-0.44**), Cf with Aaox (0.31**) and Ni + Hu with Cf (-0.23), indicate the participation of antioxidant molecules to different degrees. S. habrochaites with the lowest insect incidence and the native Mexican 21207 with the highest Cf content demonstrate potential in plant breeding programs.
References
Abe, N., Murata, T., & Hirota, A. (1998). Novel. DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Bioscience, Biotechnology and Biochemistry, 62 (4), 661-666. https://doi.org/10.1271/bbb.62.661
Alcantar-Acosta, S. M., Mejía-Carranza, J., Mora-Herrera, M. E., & Aguilar-Medel, S. (2020). Incidencia de Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) y mecanismos de defensa en Gerbera x hybrida. Revista Mexicana de Ciencias Agrícolas, 11 (2), 275-288. https://doi.org/10.29312/remexca.v11i2.1742
Álvarez, G. M. (2015). Resistencia a insectos en tomate (Solanum spp.). Cultivos Tropicales, 36 (2), 100-110. http://www.redalyc.org/articulo.oa?id=193239249015
Andrade, M. C., Da Silva, A. A., Neiva, I. P., Oliveira, I. R. C., De Castro, E. M., Francis, D. M., & Maluf, W. R. (2017). Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica, 213, 52. https://doi.org/10.1007/s10681-016-1792-1
Awan, Z. A., Shoaib, A., & Khan, K. A. (2018). Variations in total phenolics and antioxidant enzymes cause phenotypic variability and differential resistant response in tomato genotypes against early blight disease. Scientia Horticulturae, 239, 216-223. https://doi.org/10.1016/j.scienta.2018.05.044
Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., Triki, T., Cheour, F., & Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. http://dx.doi.org/10.1016/j.sajb.2016.08.018
Baldin, E. L., Vendramim, J. D., & Lourenção, A. L. (2005). Resistência de genótipos de tomateiro à mosca-branca Bemisia tabaci (Gennadius) biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 34 (3), 435-441. https://doi.org/10.1590/S1519-566X2005000300012
Dadáková, K., Heinrichová, T., Lochman, J., & Kašparovský, T. (2020). Production of defense phenolics in tomato leaves of different age. Molecules, 25 (21), 4952. https://doi.org/10.3390/molecules25214952
Dar, S. A., Rather, B. A., Wani, A. R., & Ganie, M. A. (2017). Resistance against insect pests by plant phenolics and their derivative compounds. Chemical Science Review Letters, 6(23), 1941-1949. https://www.researchgate.net/profile/Showket-Dar/publication/343999289_Chemical_Science_Review_and_Letters_Resistance_against_Insect_Pests_by_Plant_Phenolics_and_their_Derivative_Compounds/links/5f4d4b4d299bf13c506c89be/Chemical-Science-Review-and-Letters-Resistance-against-Insect-Pests-by-Plant-Phenolics-and-their-Derivative-Compounds.pdf
Dawood, M. H., & Snyder, J. C. (2020). The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene. Frontiers in Plant Science, 11, 35. https://doi.org/10.3389/fpls.2020.00035
Dieng, H., Satho, T., Hassan, A. A., Aziz, A. T., Morales, R. E., Hamid, S. A., Miake, F., & Abubakar, S. (2011). Peroxidase activity after viral infection and whitefly infestation in juvenile and mature leaves of Solanum lycopersicum. Journal of Phytopathology, 159, 707-712. https://doi.org/10.1111/j.1439-0434.2011.01830.x
Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J., & Takáč, T. (2021). Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science, 2178, 618835. https://doi.org/10.3389/fpls.2020.618835
El-Zohri, M., Bafeel, S. O., & Al-Zahrani, W. (2020). Differential oxidative and biochemical responses of tomato and maize leaves to Spodoptera exigua herbivory. Pakistan Journal of Botany, 52(4), 1277-1287. http://dx.doi.org/10.30848/PJB2020-4(23)
Firdaus, S., Van Heusden, A. W., Hidayati, N., Supena, E. D. J., Vsser, R. G., & Vosman, B. (2012). Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 187, 31-45. https://doi.org/10.1007/s10681-012-0704-2
García-Sánchez, A. N., Hernández-Juárez, A., López-López, H., Sierra-Gómez, U. A., & Delgado-Ortiz, J. C. (2023). Resistencia de tres variedades de tomate a la mosca blanca de los invernaderos, Trialeurodes vaporariorum. Southwestern Entomologist, 48(1), 249-256. https://doi.org/10.3958/059.048.0124
Hilker, M., & Fatouros, N. E. (2016). Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Current Opinion in Plant Biology, 32, 9-16. https://doi.org/10.1016/j.pbi.2016.05.003
Joshi, S., & Srivastava, R. M. (2022). Screening of tomato varieties against whitefly, Bemisia tabaci (Gen.) under field condition at Pantnagar Uttarakhand. The Pharma Innovation Journal, 11(7), 3255-3258. https://www.thepharmajournal.com/archives/2022/vol11issue7S/PartAJ/S-11-7-336-887.pdf
Kerchev, P. I., Fenton, B., Foyer, C. H., & Hancock, R. D. (2012). Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, cell & environment, 35(2), 441-453. https://doi.org/10.1111/j.1365-3040.2011.02399.x
Kisa, D., Kayır, Ö., Sağlam, N., Şahin, S., Öztürk, L., & Elmastaş, M. (2019). Changes of phenolic compounds in tomato associated with the heavy metal stress. Bartın University International Journal of Natural and Applied Sciences, 2(1), 35-43. https://dergipark.org.tr/en/pub/jonas/issue/47366/549252
Kortbeek, R. W., Van der Gragt, M., & Bleeker, P. M. (2019). Endogenous plant metabolites against insects. European Journal of Plant Pathology, 154, 67-90. https://doi.org/10.1007/s10658-018-1540-6
Kulus, D. (2022). Genetic diversity for breeding tomato. In: Priyadarshan, P., & Jain, S. M. Cash Crops. (pp. 505–521). Ed. Springer, Cham. https://doi.org/10.1007/978-3-030-74926-2_13
Kumar, K., Pal, S., & Devi, Y. K. (2020). Morpho-physical characteristic in tomato imparting resistance to sucking pest whitefly, Bemisia tabaci (Gennadius) Aleyrodidae: Hemiptera: A Review. Journal of Emerging Technologies and Innovative Research (Jetir), 7(12), 1512-1522. https://www.researchgate.net/publication/347635085_Morpho-physical_Characteristic_in_Tomato_Imparting_Resistance_to_Sucking_Pest_Whitefly_Bemisia_tabaci_Gennadius_Aleyrodidae_Hemiptera_A_Review
Kundu, A., Mishra, S., & Vadassery, J. (2018). Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta, 248, 981-997. https://doi.org/10.1007/s00425-018-2953-3
Kundu, A., & Vadassery, J. (2019). Chlorogenic acid‐mediated chemical defense of plants against insect herbivores. Plant Biology, 21(2), 185-189. https://doi.org/10.1111/plb.12947
Marin-Montes, I. M., Lobato-Ortiz, R., Carrillo-Castañeda, G., Rodríguez-Pérez, J. E., García-Zavala, J. J., & Velasco-García, Á. M. (2019). Riqueza alélica de poblaciones nativas de jitomate (Solanum lycopersicum L.) para el mejoramiento genético. Agrociencia, 53, 355-370. https://www.agrociencia-colpos.org/index.php/agrociencia/article/view/1789/1786
Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Plant responses to herbivory, wounding, and infection. International Journal of Molecular Sciences, 23(13), 7031. https://doi.org/10.3390/ijms23137031
Nafees, M., Fahad, S., Shah, A. N., Bukhari, M. A., Ahmed, I., Ahmad, S., & Hussain, S. (2019). Reactive oxygen species signaling in plants. In: Hasanuzzaman, M., Rehman, H. K., Nahar, K., & Alharby, F. H. Plant abiotic stress tolerance. (pp. 259-272). Ed. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_11
Narita, J. P., Fatoretto, M. B., Lopes, J. R. S., & Vendramim, J. D. (2023). Type-IV glandular trichomes disrupt the probing behavior of Bemisia tabaci MEAM1 and Tomato severe rugose virus inoculation in tomato plants. Journal of Pest Science, 96(3), 1035-1048. https://doi.org/10.1007/s10340-023-01599-4
Orabi, S., & Abou-Hussein, S. D. (2019). Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Current Science International, 8(3), 565-576. https://www.curresweb.com/csi/csi/2019/565-576.pdf
Ortega-Arenas, L. D., & Carapia, R. V. E. (2020). Moscas blancas (Hemiptera: Aleyrodidae) en México: estatus, especies, distribución e importancia. Dugesiana, 27(1), 37-54. https://doi.org/10.32870/dugesiana.v27i1.7095
Ortega-Arenas, L. D., Miranda-Aragón, D. A., & Sandoval-Villa, M. (2006). Densidad de huevos y ninfas de mosca blanca Trialeurodes vaporariorum (WEST.) en Gerbera jamesonii H. Bolus con diferentes regímenes de fertilización nitrogenada. Agrociencia, 40 (3), 363-371. México. http://www.redalyc.org/articulo.oa?id=30240309
Pal, S., Karmakar, P., Chattopadhyay, A., & Ghosh, S. K. (2021). Evaluation of tomato genotypes for resistance to whitefly (Bemisia tabaci Gennadius) and tomato leaf curl virus in eastern India. Journal of Asia-Pacific Entomology, 24(2), 68-76. https://doi.org/10.1016/j.aspen.2021.04.001
Paudel, S., Lin, P. A., Foolad, M. R., Ali, J. G., Rajotte, G. E., & Felton G. W. (2019). Induced plant defenses against herbivory in cultivated and wild tomato. Journal of Chemical Ecology, 45, 693-707. https://doi.org/10.1007/s10886-019-01090-4
Perier, D. J., Cremonez, S. G. P., Champagne, D. E., Simmons, M. K., & Riley, G. D. (2022). Whiteflies at the intersection of polyphagy and insecticide resistance. Annals of the Entomological Society of America, 115(6), 401-416. https://doi.org/10.1093/aesa/saac008
Perring, T. M., Stansly, P. A., Liu, T. X., Smith, H. A., & Andreason, S. A. (2018). Whiteflies: Biology, Ecology, and Management. In: Wakil, W, Brust, G. E, & Perring, T. M. Sustainable Management of Arthropod Pests of Tomato. (pp. 73-110) Ed. Elsevier. https://doi.org/10.1016/B978-0-12-802441-6.00004-8
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rashad, Y., Aseel, D., & Hammad, S. (2020). Phenolic compounds against fungal and viral plant diseases. In: Lone, R., Shuab, R., Kamili, A. N. Plant Phenolics in Sustainable Agriculture (pp. 201-219). Ed. Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_9
Rodríguez-López, M. J., Moriones, E., & Fernández-Muñoz, R. (2020). An acylsucrose-producing tomato line derived from the wild species Solanum pimpinellifolium decreases fitness of the whitefly Trialeurodes vaporariorum. Insects, 11(9), 616. https://doi.org/10.3390/insects11090616
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021) Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10, 277. https://doi.org/10.3390/antiox10020277
Sánchez-Peña, P., Oyuma K., Núñez-Farfán, J., Fornoni, J., Hernández-Verdugo, S., Márquez-Guzmán, J., & Garzón-Tiznado J. A. (2006). Sources of resistance to whitefly (Bemisia spp.) in wild populations of Solanum lycopersicum var. cerasiforme (Dunal) spooner G. J. Anderson et R.K. Jansen in Northwestern Mexico. Genetic Resources and Crop Evolution, 53, 711–719. https://doi.org/10.1007/s10722-004-3943-9
Satyabrata, N., Rukmini, M., & Kumar, J. R. (2021). Molecular basis of insect resistance in plants: current updates and future prospects. Research Journal of Biotechnology, 16(3), 194-205. https://www.researchgate.net/profile/Satyabrata-Nanda/publication/349584959_Molecular_basis_of_insect_resistance_in_plants_Current_updates_and_future_prospects/links/603725b14585158939c9fbbe/Molecular-basis-of-insect-resistance-in-plants-Current-updates-and-future-prospects.pdf
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sperdouli, I., Andreadi, S. S., Adamakis, I. D. S, Moustaka, J., Koutsogeorgiou, E. I., & Moustakas, M. (2022). Reactive oxygen species initiate defense responses of potato photosystem II to sap-sucking insect feeding. Insects, 13(5), 409. https://doi.org/10.3390/insects13050409
Steiner, A. A. (1984). The Universal Nutrient Solution. In: International Society for Soilless Culture, ISOSC. Proceedings Sixth International Congress on Soilless Culture. (pp. 633-649). Wageningen, The Netherlands. ISBN: 9789070976040.
Su, Q., Chen, G., Mescher, M. C., Peng, Z., Xie, W., Wang, S., Wu, Q., Liu, J., Li, C., Wang, W., & Zhang, Y. (2018). Whitefly aggregation on tomato is mediated by feeding‐induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Functional Ecology, 32(5), 1180-1193. https://doi.org/10.1111/1365-2435.13055
Tak, Y., & Kumar, M. (2020). Phenolics: a key defence secondary metabolite to counter biotic stress. In: Lone, R., Shuab, R., Kamili, A. N. Plant phenolics in sustainable agriculture. (pp. 309-329). Ed. Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_13
Wagay, N. A., Lone, R., Rafiq, S., & Bashir, S. U. (2020). Phenolics: A Game Changer in the Life Cycle of Plants. In: Lone, R., Shuab, R., Kamili, A. N. Plant phenolics in sustainable agriculture. (pp. 241-275). Ed. Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_11
Yactayo-Chang, J. P., Tang, H. V., Mendoza, J., Christensen, S. A., & Block, A. K. (2020). Plant defense chemicals against insect pests. Agronomy 10(8), 1156. https://doi.org/10.3390/agronomy10081156
Yang, F., Shen, H., Huang, T., Yao, Q., Hu, J., Tang, J., Zhang, R., Tong, H., Wu, Q., Zhang, Y., & Su, Q. (2023), Flavonoid production in tomato mediates both direct and indirect plant defences against whiteflies in tritrophic interactions. Pest Managament Science, 79, 4644-4654. https://doi.org/10.1002/ps.7667
Yao, Q., Peng, Z., Tong, H., Yang, F., Xing, G., Wang, L., Zheng, J., Zhang, Y., & Su, Q. (2019). Tomato plant flavonoids increase whitefly resistance and reduce spread of Tomato Yellow Leaf Curl Virus. Journal of Economic Entomology, 112(6), 2790-2796. https://doi.org/10.1093/jee/toz199
Zeist, A. R., de Resende, J. T. V., Perrud, A. C., Gabriel, A., Maluf, W. R., Arantes, J. H. V., & Youssef, K. (2021). Resistance to Bemisia tabaci in tomato species and hybrids and its association with leaf trichomes. Euphytica, 217, 85. https://doi.org/10.1007/s10681-021-02815-x
Zunjarrao, S. S., Tellis, M. B., Joshi, S. N, & Joshi, R. S. (2020). Plant-insect interaction: the saga of molecular coevolution. In: Mérillon, J. M., & Ramawat, K. G. Co-Evolution of secondary metabolites. (pp. 19-45). Ed. Springer Nature, Switzerland AG. http://dx.doi.org/10.1007/978-3-319-76887-8_42-1
Shree, P., Kumar, M., & Singh, D. K. (2021). Molecular and Biochemical Aspect of Insect-Plant Interaction: A perspective for pest management. In: Singh, I. K., Singh, A. (eds). Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_17
War, A. R., Buhroo, A. A., Hussain, B., Ahmad, T., Nair R. M., & Sharma, H. C. (2020). Plant defense and insect adaptation with reference to secondary metabolites. In: Co-Evolution of Secondary Metabolites. Mérillon, J.-M., Ramawat K. G. (eds.). Springer Nature Switzerland AG, pp. 795-822. https://doi.org/10.1007/978-3-319-96397-6_60
Zhang, X., Sun, X., Zhao, H., Xue M., & Wang D. (2017). Phenolic compounds induced by Bemisia tabaci and Trialeurodes vaporariorum in Nicotiana tabacum L. and their relationship with the salicylic acid signaling pathway. Arthropod Plant Interactions, 11, 659-67, https://doi.org/10.1007/s11829-017-9508-6

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.