Abstract
The ornamental importance of orchids is due to the various shapes, sizes, and colors of its flowers. Unfortunately, the asexual and sexual propagation of these species takes a long time and produces a limited number of commercial propagules. Thus, plant tissue culture has been a suitable alternative for micropropagation. However, some of the materials used in this technique are expensive. Therefore, the aim of this study was to propose an alternative method for the in vitro propagation of that involves the use of disposable containers and a culture medium that requires no autoclaving. Different concentrations of 6-benzylaminopurine (BAP: 0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg•L-1) in MS (Murashige and Skoog) medium autoclaved and non-autoclaved were assessed, followed by acclimatization. After 45 days of incubation, assessed the percentage of contamination, number of shoots per explant, shoot length, number of leaves, number of roots, and root length. No contamination using the alternative method and autoclave was observed. The highest number of shoots per explant (3.77) was produced in 1.0 mg•L-1 BAP in non-autoclaved culture medium. A 98% survival rate was observed during the acclimatization phase. These results can be used as an alternative for the commercial micropropagation of orchids.
References
Martínez-Rivero, A., Ramírez-Mosqueda, M. A., Mosqueda, F. O. Rivas, P. M., & Bello-Bello, J. J. (2020). Influence of Vitrofural® on sugarcane micropropagation using temporary immersion system. Plant Cell Tissue and Organ Culture,141, 447-453. https://doi.org/10.1007/s11240-020-01800-x
Bhattacharyya, P., Paul, P., Kumaria, S., & Tandon, P. (2018). Transverse thin cell layer (t-TCL)-mediated improvised micropropagation protocol for endangered medicinal orchid Dendrobium aphyllum Roxb: an integrated phytomolecular approach. Acta Physiologiae Plantarum, 40, 1-14. https://doi.org/10.1007/s11738-018-2703-y
Caballero-Villalobos, L., Silva-Arias, G. A., Buzatto, C. R., Nervo, M. H., & Singer, R. B. (2017). Generalized food-deceptive pollination in four Cattleya (Orchidaceae: Laeliinae) species from Southern Brazil. Flora, 234, 195-206. https://doi.org/10.1016/j.flora.2017.07.014
Cardoso, J. C., Martinelli, A. P., & Teixeira da Silva, J. A. (2016). A novel approach for the selection of Cattleya hybrids for precocious and season-independent flowering. Euphytica, 210, 143-150. https://doi.org/10.1007/s10681-016-1714-2
Cardoso, J. C., Sheng-Gerald, L. T., & Teixeira da Silva, J. A. (2018). Micropropagation in the Twenty-First Century. In: Loyola-Vargas, V., & Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY, pp 17-46. https://doi.org/10.1007/978-1-4939-8594-4_2
Chen, C. (2016). Cost analysis of plant micropropagation of Phalaenopsis. Plant Cell, Tissue and Organ Culture, 126, 167-175. https://doi.org/10.1007/s11240-016-0987-4
DeSantis, P. (2021). Steam sterilization in autoclaves. In: Agalloco, J., DeSantis, P., Grilli, A., & Pavell, A. (eds) Handbook of Validation in Pharmaceutical Processes. CRC Press, FL, pp 217-230. https://doi.org/10.1201/9781003163138
Dhiman, N., Devi, K., & Bhattacharya, A. (2021). Development of low cost micropropagation protocol for Nardostachys jatamansi: A critically endangered medicinal herb of Himalayas. South African Journal of Botany, 140, 468-477. https://doi.org/10.1016/j.sajb.2021.04.002
Emara, H. A., Nower, A. A., Hamza, E. M., & El Shaib, F. (2018). Evaluation of photomixotrophic technique and several carbohydrate sources as affecting banana micropropagation. International Journal of Current Microbiology and Applied Sciences, 7(10), 788-804. https://doi.org/10.20546/ijcmas.2018.710.088
Gago, D., Vilavert, S., Bernal, M. Á., Sánchez, C., Aldrey, A., & Vidal, N. (2021). The Effect of Sucrose Supplementation on the Micropropagation of Salix viminalis L. Shoots in Semisolid Medium and Temporary Immersion Bioreactors. Forests, 12(10), 1408. https://doi.org/10.3390/f12101408
George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant tissue culture procedure-background, In: George, E. F., Hall, M. A., & Klerk, G. J. D. (eds.), Plant propagation by tissue culture. Springer, Dordrecht, pp. 1-28. https://doi.org/10.1007/978-1-4020-5005-3_1
Harabi, A., Bouzerara, F., Foughali, L., Boudaira, B., Guechi, A., & Brihi, N. (2016). Elaboration and characterization of low cost ceramics microfiltration membranes applied to the sterilization of plant tissue culture media. Journal of the Taiwan Institute of Chemical Engineers, 59, 79-85. https://doi.org/10.1016/j.jtice.2015.07.032
Hazarika, B. N. (2003). Acclimatization of tissue-cultured plants. Current Science, 85(12), 1704-1712.
Indacochea-Ganchozo, B., Parrales-Villacreses, J., Castro-Piguave, C., Vera-Tumbaco, M., & Gabriel-Ortega, J. (2017). Aclimatación in vitro de especies forestales nativas del Sur de Manabí en peligro de extinción. Journal of the Selva Andina Research Society, 8(2), 124-134.
Leyva-Ovalle, O. R., Bello-Bello, J. J., Murguía-González, J., Núñez-Pastrana, R., & Ramírez-Mosqueda, M. A. (2020). Micropropagation of Guarianthe skinneri (Bateman) Dressler et W.E. Higging in temporary immersion systems. 3 Biotech, 10(26). https://doi.org/10.1007/s13205-019-2010-3
Ma, H., Egamberdieva, D., Wirth, S., Li, Q., Omari, R. A., Hou, M., & Bellingrath-Kimura, S. D. (2019). Effect of biochar and irrigation on the interrelationships among soybean growth, root nodulation, plant p uptake, and soil nutrients in a sandy field. Sustainability, 11(23), 6542. https://doi.org/10.3390/su11236542
Manokari, M., Priyadharshini, S., Jogam, P., Dey, A., & Shekhawat, M. S. (2021). Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews. Plant Cell Tissue and Organ Culture, 146, 69–82. https://doi.org/10.1007/s11240-021-02044-z
Mantovani, C., Galdiano, R. F., Delgado, J. M., Prado, R. M. & Pivetta, K. F. L. (2017). In vitro growth of Cattleya guttata and Epidendrum schomburgkii with acid silicate. Acta Horticulturae, 1224, 51-56. https://doi.org/10.17660/ActaHortic.2018.1224.8
Menchaca-García, R. A., Lozano-Rodríguez, M. Á., & Sánchez-Morales, L. (2012). Estrategias para el aprovechamiento sustentable de las orquídeas de México. Revista Mexicana de Ciencias Forestales, 3(13), 09-16.
Menezes-Sá, T. S. A., Costa, A. S. D., Arrigoni-Blank, M. D. F., Blank, A. F., Moura, G. M. S., & Soares, C. A. (2021). In vitro propagation and conservation of Cattleya tigrina A. Rich. Ciência Rural, 52(5). http://doi.org/10.1590/0103-8478cr20200517
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiology, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murguía-González, J., Leyva-Ovalle, O. R., Lee-Espinosa, H. E., Galindo-Tovar, M. E., Pardío-Sedas, V. T., & Llarena-Hernández, R. C. (2016). Sistemas de producción de orquídeas (Orquidaceae) en Veracruz, México. Agroproductividad 9(6), 62-66.
Murthy, H, N., Paek, K. Y., & Park, S. Y. (2018). Micropropagation of orchids by using bioreactor technology. In: Lee, Y. I., & Yeung, E. T. (eds.), Orchid propagation: from laboratories to greenhouses—methods and protocols. Humana Press, New York, pp 195-208. https://doi.org/10.1007/978-1-4939-7771-0_9
Naaz, A., Hussain, S. A., Anis, M., & Alatar, A. A. (2019). Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biologia Plantarum, 63(1), 174-182.
Ormeño-Orrillo, E., & Dávila, D. Z. (1999). Optimización del tiempo de esterilización de soportes basados en suelo y compost en la producción de inoculentes para leguminosas. Revista Peruana de Biología, 6(2), 181-184. https://doi.org/10.15381/rpb.v6i2.8313
Pais, A. K., da Silva, A. P., de Souza, J. C., Teixeira, S. L., Ribeiro, J. M., Peixoto, A. R., & da Paz, C. D. (2016). Sodium hypochlorite sterilization of culture medium in micropropagation of Gerbera hybrida cv. Essandre. African Journal of Biotechnology, 15(36), 1995-1998. https://doi.org/10.5897/AJB2016.15405
Pastelín-Solano, M. C., Ramírez-Mosqueda, M. A., Bogdanchikova, N., Castro-González, C. G., & Bello-Bello, J. J. (2020). Las nanopartículas de plata afectan la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews). Agrociencia, 54(1), 1-13.
Quiala, E., Jiménez, E., de Feria, M., Alvarado, Y., Chávez, M., Agramonte, D., & Capote, A. (2002). Empleo del Vitrofural en la esterilización química del endospermo artificial de los embriones somáticos encapsulados de Saccharum spp. híbrido var Cuba 87-51. Biotecnología Vegetal, 2(4), 221-226.
Sáez, P. L., Bravo, L. A., Latsague, M. I., Sánchez, M. E., & Ríos, D. G. (2012). Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Scientia Horticulturae, 138,7-16. https://doi.org/10.1016/j.scienta.2012.02.005
Salgado, J. M., & Peñaranda, L. V. (2019). Modificaciones en medios de cultivo aplicadas en conservación y producción in-vitro de orquídeas. Revista Colombiana de Investigaciones Agroindustriales, 6(1), 16-28. https://doi.org/10.23850/24220582.1815
Sarikhani, H., & Sarikhani-Khorami, H. (2021). Effect of light quality on micropropagation and some morphological properties of cadaman avimag (Prunus persica× P. davidiana) rootstock. International Journal of Horticultural Science and Technology, 8(1), 51-65. https://doi.org/10.22059/ijhst.2020.298841.351
Shao, S. C., Burgess, K. S., Cruse-Sanders, J. M., Liu, Q., Fan, X. L., Huang, H., & Gao, J. Y. (2017). Using in situ symbiotic seed germination to restore over-collected medicinal orchids in Southwest China. Frontiers in Plant Science, 8, 888. https://doi.org/10.3389/fpls.2017.00888
Singh, A. (2018). Efficient micropropagation protocol for Jatropha curcas using liquid culture medium. Journal of Crop Science and Biotechnology, 21, 89-94. https://doi.org/10.1007/s12892-017-0004-0
Souza, D. M. S. C., Fernandes, S. B., Molinari, L. V., Avelar, M. L. M., & Brondani, G. E. (2021). Activated charcoal application for the micropropagation of Cattleya crispata (Thunb.) Van den Berg. Nativa, 9(4), 352-358. https://doi.org/10.31413/nativa.v9i4.12164
Suaib, S., Arief, N., Sadimantara, G. R., Suliartini, N. W. S., & Rakian, T. C. (2018). In vitro seeds germination and plantlets growth of hot pepper (Capsicum frutescens L.) on non-autoclaved murashige and skoog basal medium. Asian Journal of Plant Sciences, 17(4), 173-181. https://doi.org/10.3923/ajps.2018.173.181
Vahdati, K., Asayesh, Z. M., Aliniaeifard, S., & Leslie, C. (2017). Improvement of ex vitro desiccation through elevation of CO2 concentration in the atmosphere of culture vessels during in vitro growth. HortScience, 52(7), 1006-1012. https://doi.org/10.21273/HORTSCI11922-17
Valencia-Juárez, M. C., Escobedo-López, D., Díaz-Espino, L. F., & González-Pérez, E. (2019). Aclimatación ex vitro de plántulas de Fragaria x ananassa Duch. Revista Mexicana de Ciencias Agrícolas, 10(1), 91-100. https://doi.org/10.29312/remexca.v10i1.1633
van den Berg, C. (2014). Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus Cattleya (Epidendreae; Epidendroideae; Orchidaceae). Phytotaxa, 186(2), 75–86. https://doi.org/10.11646/phytotaxa.186.2.2
van den Berg, C. (2019). Nomenclatural notes on Laeliinae-VIII. Overlooked new combinations in Cattleya, and new infrageneric nothotaxa. Neodiversity, 12(1), 1-5. http://dx.doi.org/10.13102/neod.121.1
Varshney, A., & Anis, M. (2012). Improvement of shoot morphogenesis in vitro and assessment of changes of the activity of antioxidant enzymes during acclimation of micropropagated plants of Desert Teak. Acta Physiologiae Plantarum, 34, 859-867. https://doi.org/10.1007/s11738-011-0883-9
Weber, B. N., Witherell, R. A., & Charkowski, A. O. (2015). Low-cost potato tissue culture with microwave and bleach media preparation and sterilization. American Journal of Potato Research, 92, 128-137. https://doi.org/10.1007/s12230-014-9423-7
Yam, T. W., & Arditti, J. (2017). Micropropagation of orchids. Vol III. John Wiley & Sons Ltd. NJ, USA pp 2180. https://doi.org/10.1002/9781119187080.fmatter3
Yeh, C. H., Chen, K. Y., & Lee, Y.I. (2021). Asymbiotic germination of Vanilla planifolia in relation to the timing of seed collection and seed pretreatments. Botanical Studies, 62,6. https://doi.org/10.1186/s40529-021-00311-y
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.