Abstract
Cyanobacteria are photosynthetic organisms important in multiple biosphere life cycles; however, some genera such as Microcystis can form blooms and produce cyanotoxins that compromise water quality. This study aimed to validate the use of end-point PCR to detect cyanobacteria, the genus Microcystis, and its genetic capacity to produce microcystins. Three pairs of oligonucleotides were used to obtain the sequences of the 16S rRNA gene regions of cyanobacteria and Microcystis, as well as the mcyA gene associated with microcystin production. The use of end-point PCR allowed the specific detection of cyanobacteria and Microcystis in cell concentrations up to 10 times below the bloom alert limit, as well as the detection of the mcyA gene, both in isolated strains and in a simulated microbial community. The effectiveness of using end-point PCR for the specific detection of cyanobacteria makes it an early monitoring tool, capable of predicting the potential production of microcystins and, therefore, highlighting its usefulness for managing the quality of water for human consumption.
References
Beasley, V. R. (2020). Harmful Algal Blooms (Phycotoxins). In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11275-8
Beversdorf, L. J., Chaston, S. D., Miller, T. R., & McMahon, K. D. (2015). Microcystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes. PLoS ONE, 10(5). https://doi.org/10.1371/JOURNAL.PONE.0125353
Bittencourt-Oliveira, M. do C., Piccin-Santos, V., Moura, A. N., Aragão-Tavares, N. K. C., & Cordeiro-Araújo, M. K. (2014). Cyanobacteria, microcystins and cylindrospermopsin in public drinking supply reservoirs of Brazil. Anais Da Academia Brasileira de Ciências, 86(1), 297–310. https://doi.org/10.1590/0001-3765201302512
Bláha, L., Babica, P., & Maršálek, B. (2009). Toxins produced in cyanobacterial water blooms - toxicity and risks. Interdisciplinary Toxicology, 2(2). https://doi.org/10.2478/v10102-009-0006-2
Campos, A., Redouane, E. M., Freitas, M., Amaral, S., Azevedo, T., Loss, L., Máthé, C., Mohamed, Z. A., Oudra, B., & Vasconcelos, V. (2021). Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. Plants, 10(4), 639. https://doi.org/10.3390/plants10040639
Chen, M., Xu, C., Wang, X., Wu, Y., & Li, L. (2021). Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: A comparative genomics study. Algal Research, 59, 102432. https://doi.org/10.1016/j.algal.2021.102432
Chorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and Cyanotoxins in a Changing Environment: Concepts, Controversies, Challenges. Water 2021, 13(18), 2463. https://doi.org/10.3390/W13182463
Codd, G. A., Testai, E., Funari, E., & Svirčev, Z. (2020). Cyanobacteria, Cyanotoxins, and Human Health. In Water Treatment for Purification from Cyanobacteria and Cyanotoxins, (pp. 37–68). Wiley. https://doi.org/10.1002/9781118928677.ch2
De Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Gonçalves, F. J. M., & Pereira, M. J. (2004). Microcystin-producing blooms—a serious global public health issue. Ecotoxicology and Environmental Safety, 59(2), 151–163. https://doi.org/10.1016/J.ECOENV.2004.04.006
de los Santos-Villalobos, S., Díaz-Rodríguez, A. M., Ávila-Mascareño, M. F., Martínez-Vidales, A. D., & Parra-Cota, F. I. (2021). COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. Diversity, 13(8), 337. https://doi.org/10.3390/d13080337
de los Santos-Villalobos, S., Parra Cota, F. I., Herrera Sepúlveda, A., Valenzuela Aragón, B., & Estrada Mora, J. C. (2018). Colmena: colección de microorganismos edáficos y endófitos nativos, para contribuir a la seguridad alimentaria nacional. Revista Mexicana de Ciencias Agrícolas, 9(1), 191–202. https://doi.org/10.29312/remexca.v9i1.858
Dong, X., Zeng, S., Bai, F., Li, D., & He, M. (2016). Extracellular microcystin prediction based on toxigenic Microcystis detection in a eutrophic lake. Scientific Reports, 6(1), 20886. https://doi.org/10.1038/srep20886
Environmental Protection Agency [EPA]. (2024, July 22). World Health Organization (WHO) 1999 Guideline Values for Cyanobacteria in Freshwater. https://www.epa.gov/habs/world-health-organization-who-1999-guideline-values-cyanobacteria-freshwater
Farrer, D., Counter, M., Hillwig, R., & Cude, C. (2015). Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Toxins, 7(2), 457–477. https://doi.org/10.3390/toxins7020457
Genuário, D. B., Vaz, M. G. M. V., Hentschke, G. S., Sant’Anna, C. L., & Fiore, M. F. (2015). Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. International Journal of Systematic and Evolutionary Microbiology, 65(2), 663–675. https://doi.org/10.1099/ijs.0.070078-0
Hu, C., Rea, C., Yu, Z., & Lee, J. (2016). Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. Journal of Applied Microbiology, 120(1), 138–151. https://doi.org/10.1111/jam.12983
Kadri, K. (2020). Polymerase Chain Reaction (PCR): Principle and Applications. In Synthetic Biology - New Interdisciplinary Science. IntechOpen. https://doi.org/10.5772/intechopen.86491
Kaushik, R., & Balasubramanian, R. (2013). Methods and Approaches Used for Detection of Cyanotoxins in Environmental Samples: A Review. Critical Reviews in Environmental Science and Technology, 43(13), 1349–1383. https://doi.org/10.1080/10643389.2011.644224
Lad, A., Breidenbach, J. D., Su, R. C., Murray, J., Kuang, R., Mascarenhas, A., Najjar, J., Patel, S., Hegde, P., Youssef, M., Breuler, J., Kleinhenz, A. L., Ault, A. P., Westrick, J. A., Modyanov, N. N., Kennedy, D. J., & Haller, S. T. (2022). As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life, 12(3), 418. https://doi.org/10.3390/life12030418
Lee, J., Choi, J., Fatka, M., Swanner, E., Ikuma, K., Liang, X., Leung, T., & Howe, A. (2020). Improved detection of mcyA genes and their phylogenetic origins in harmful algal blooms. Water Research, 176, 115730. https://doi.org/10.1016/J.WATRES.2020.115730
Lucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Ávila, J. A., López-Guerrero, J. A., & Aguilar-Quesada, R. (2016). DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis. Biopreservation and Biobanking, 14(4), 264–270. https://doi.org/10.1089/bio.2015.0064
Martins, A., & Vasconcelos, V. (2011). Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Archives of Microbiology, 193(9), 615–627. https://doi.org/10.1007/s00203-011-0724-7
Massey, I. Y., Yang, F., Ding, Z., Yang, S., Guo, J., Tezi, C., Al-Osman, M., Kamegni, R. B., & Zeng, W. (2018). Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon, 151, 156–162. https://doi.org/10.1016/J.TOXICON.2018.07.010
Meriluoto, J., Spoof, L., & Codd, G. A. (2016). Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis (J. Meriluoto, L. Spoof, & G. A. Codd, Eds.). Wiley. https://doi.org/10.1002/9781119068761
Morales-Sandoval, P. H., Valenzuela-Ruiz, V., Ortega-Urquieta, M. E., Martínez-Vidales, A. D., Félix-Pablos, C. M., Chávez-Luzania, R. A., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Taxonomía bacteriana basada en índices relacionados al genoma completo. La Sociedad Académica, 58, 39–51.
Ngwa, F., Madramootoo, C., & Jabaji, S. (2014). Monitoring toxigenic Microcystis strains in the Missisquoi bay, Quebec, by PCR targeting multiple toxic gene loci. Environmental Toxicology, 29(4), 440–451. https://doi.org/10.1002/tox.21770
Omidi, A., Esterhuizen-Londt, M., & Pflugmacher, S. (2018). Still challenging: the ecological function of the cyanobacterial toxin microcystin–What we know so far. Toxin Reviews, 37(2), 87–105. Taylor and Francis Ltd. https://doi.org/10.1080/15569543.2017.1326059
Perkerson III, R. B., Johansen, J. R., Kovácik, L., Brand, J., Kaštovský, J., & Casamatta, D. A. (2011). A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology, 47(6), 1397–1412. https://doi.org/10.1111/j.1529-8817.2011.01077.x
Radkova, M., Stefanova, K., Uzunov, B., Gärtner, G., & Stoyneva-Gärtner, M. (2020). Morphological and Molecular Identification of Microcystin-Producing Cyanobacteria in Nine Shallow Bulgarian Water Bodies. Toxins, 12(1), 39. https://doi.org/10.3390/toxins12010039
Raeder, U., & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1(1), 17–20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x
Ren, X., Wang, Y., Zhang, K., Ding, Y., Zhang, W., Wu, M., Xiao, B., & Gu, P. (2023). Transmission of Microcystins in Natural Systems and Resource Processes: A Review of Potential Risks to Humans Health. Toxins, 15(7), 448. https://doi.org/10.3390/toxins15070448
Reynolds, C., Jaworski, G., Cmiech, H., & Leedale, G. (1981). On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Emend. Elenkin. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 293(1068), 419–477. https://doi.org/10.1098/rstb.1981.0081
Rinehart, K. L., Namikoshi, M., & Choi, B. W. (1994). Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). Journal of Applied Phycology, 6(2), 159–176. https://doi.org/10.1007/BF02186070
Rippka, R., Waterbury, J. B., & Stanier, R. Y. (1981). Isolation and Purification of Cyanobacteria: Some General Principles. The Prokaryotes, 212–220. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_8
Rouhiainen, L., Vakkilainen, T., Siemer, B. L., Buikema, W., Haselkorn, R., & Sivonen, K. (2004). Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90. Applied and Environmental Microbiology, 70(2), 686. https://doi.org/10.1128/AEM.70.2.686-692.2004
Sabart, M., Crenn, K., Perrière, F., Abila, A., Leremboure, M., Colombet, J., Jousse, C., & Latour, D. (2015). Co-occurrence of microcystin and anatoxin-a in the freshwater lake Aydat (France): Analytical and molecular approaches during a three-year survey. Harmful Algae, 48, 12–20. https://doi.org/10.1016/j.hal.2015.06.007
Saker, M. L., Vale, M., Kramer, D., & Vasconcelos, V. M. (2007). Molecular techniques for the early warning of toxic cyanobacteria blooms in freshwater lakes and rivers. Applied Microbiology and Biotechnology, 75(2), 441–449. https://doi.org/10.1007/s00253-006-0813-8
Santos, K. R. de S., Hentschke, G. S., Ferrari, G., Andreote, A. P. D., Fiore, M. de F., Vasconcelos, V., & Sant’Anna, C. L. (2023). Molecular, morphological and ecological studies of Limnospira platensis (Cyanobacteria), from saline and alkaline lakes, Pantanal Biome, Brazil. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1204787
Shahi, S. K., Freedman, S. N., & Mangalam, A. K. (2017). Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 8(6), 607–615. https://doi.org/10.1080/19490976.2017.1349041
Shi, L., Du, X., Liu, H., Chen, X., Ma, Y., Wang, R., Tian, Z., Zhang, S., Guo, H., & Zhang, H. (2021). Update on the adverse effects of microcystins on the liver. Environmental Research, 195, 110890. https://doi.org/10.1016/J.ENVRES.2021.110890
Singh, S., Rai, P. K., Chau, R., Ravi, A. K., Neilan, B. A., & Asthana, R. K. (2015). Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Research, 69, 131–142. https://doi.org/10.1016/j.watres.2014.11.015
Thawabteh, A. M., Naseef, H. A., Karaman, D., Bufo, S. A., Scrano, L., & Karaman, R. (2023). Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins 2023, 15(9), 582. https://doi.org/10.3390/TOXINS15090582
Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0
Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2010). Multiplex PCR for detection of microcystins‐producing cyanobacteria from freshwater samples. Environmental Toxicology, 25(3), 251–260. https://doi.org/10.1002/tox.20502
Wan, D., Wu, Q., & Kuča, K. (2016). Spirulina. In Nutraceuticals (pp. 569–583). Elsevier. https://doi.org/10.1016/B978-0-12-802147-7.00042-5
Watanabe, M. F. ., Harada, K., Carmichael, W. W., & Fujiki, H. (1996). Toxic Microcystis (pp. 103–105). CRC Press. https://books.google.com/books/about/Toxic_Microcystis.html?hl=es&id=u8qjz-ptTCYC
World Health Organization [WHO]. (2021). Guidelines on recreational water quality. Volume 1, Coastal and fresh waters. World Health Organization.
Zhou, C., Chen, H., Zhao, H., & Wang, Q. (2021). Microcystin biosynthesis and toxic effects. Algal Research, 55. https://doi.org/10.1016/j.algal.2021.102277
Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic Cyanobacteria: A Review of the Biological Importance of Microcystins in Freshwater Environments. Journal of Toxicology and Environmental Health, 8(1), 1–37. https://doi.org/10.1080/10937400590889412
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.