Genotoxicity of Mexican woodworkers: micronucleus frequency and nuclear abnormalities in buccal mucosa cells
PDF (Español (España))

Keywords

Cabinetmakers
Carpenters
Varnishers
Genomic instability
Genotoxicity
Micronuclei
Nuclear abnormalities
buccal mucosa

Métricas de PLUMX 

Abstract

Continuous exposure to wood industry waste is associated with damage to genetic material. This study examined the frequency of micronuclei and nuclear abnormalities in oral mucosa cells of woodworkers to detect genomic instability and health risks. We collected 91 buccal mucosa samples from woodworkers and, as a control group, 73 office workers samples. Two thousand cells from each sample were analyzed under a fluorescence microscope (100x). The average age of participants was 38.0 ± 11.4. The mean body mass index (BMI) was 27.7 ± 4.7. In the dust-exposed group, 83.5% of participants were men, and 16.5% were women. Woodworkers participating in the study were exposed to 25 times the Threshold Limit Value-Time Weighted Average of 1 mg/m3. Increased DNA damage biomarkers, the appearance of binucleated cells, and programmed cell death biomarkers allow for identifying a higher health risk for woodworkers compared with the control group. The risks increase in exposed individuals who consume tobacco and alcohol. Woodworkers have a high occupational risk, evidenced by genotoxicity and cytotoxicity associated with exposure to high amounts of wood dust and solvents. The continuous monitoring of cito/genotoxicity biomarkers could be used to develop a systematic method applicable to several industrial sectors with high-risk individuals.

https://doi.org/10.15741/revbio.12.e1770
PDF (Español (España))

References

Acheson, E. D., Cowdell, R. H., Hadfield, E., & Macbeth, R. G. (1968). Nasal Cancer in Woodworkers in the Furniture Industry. British Medical Journal, 2(5605), 587–596. https://doi.org/10.1136/bmj.2.5605.587

Aguiar -Torres, L., dos Santos-Rodrigues, A., Linhares, D., Camarinho, R., Nunes-Páscoa Soares-Rego, Z. M., & Ventura-García, P. (2019). Buccal epithelial cell micronuclei: Sensitive, non-invasive biomarkers of occupational exposure to low doses of ionizing radiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 838(September 2018), 54–58. https://doi.org/10.1016/j.mrgentox.2018.12.009

Alonso-Sardón, M., Chamorro, A. J., Hernández-García, I., Iglesias-De-Sena, H., Martín-Rodero, H., Herrera, C., Marcos, M., & Mirón-Canelo, J. A. (2015). Association between occupational exposure to wood dust and cancer: A systematic review and meta-analysis. PLoS ONE, 10(7), 1–16. https://doi.org/10.1371/journal.pone.0133024

Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., Burgaz, S., Holland, N., Kirsh-Volders, M., Knasmueller, S., Zeiger, E., Carnesoltas, D., Cavallo, D., da Silva, J., de Andrade, V. M., Demircigil, G. C., Odio, A. D., Donmez-Altuntas, H., Gattas, G., Giri, A., … Fenech, M. (2011). The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN XL): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutation Research - Reviews in Mutation Research, 728(3), 88–97. https://doi.org/10.1016/j.mrrev.2011.06.005

Bruschweiler, E. D., Hopf, N. B., Wild, P., Huynh, C. K., Fenech, M., Thomas, P., Hor, M., Charriere, N., Savova-Bianchi, D., & Danuser, B. (2014). Workers exposed to wood dust have an increased micronucleus frequency in nasal and buccal cells: Results from a pilot study. Mutagenesis, 29(3), 201–207. https://doi.org/10.1093/mutage/geu003

Celik, A., & Kanık, A. (2006). Genotoxicity of occupational exposure to wood dust: Micronucleus frequency and nuclear changes in exfoliated buccal mucosa cells. Environmental and Molecular Mutagenesis, 47(9), 693–698. https://doi.org/10.1002/em.20257

Ceppi, M., Smolkova, B., Staruchova, M., Kazimirova, A., Barancokova, M., Volkovova, K., Collins, A., Kocan, A., Dzupinkova, Z., Horska, A., Buocikova, V., Tulinska, J., Liskova, A., Mikusova, M. L., Krivosikova, Z., Wsolova, L., Kuba, D., Rundén-Pran, E., El Yamani, N., … Dusinska, M. (2023). Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 885(July 2022). https://doi.org/10.1016/j.mrgentox.2022.503572

Coronas, M. V., Vaz Rocha, J. A., Favero-Salvadori, D. M., & Ferrão-Vargas, V. M. (2016). Evaluation of area contaminated by wood treatment activities: Genetic markers in the environment and in the child population. Chemosphere, 144, 1207–1215. https://doi.org/10.1016/j.chemosphere.2015.09.084

De Tursi-Ríspoli, L., Vázquez-Tarragón, A., Vázquez-Prado, A., Sáez-Tormo, G., Mahmoud, A. I., Bruna-Esteban, M., Mulas-Fernández, C., & Gumbau-Puchol, V. (2013). Relationship of oxidative stress and weight loss achieved in morbid obese patients by means of bariatric surgery using the duodenal switch technique. Nutricion Hospitalaria, 28(4), 1085–1092. http://www.ncbi.nlm.nih.gov/pubmed/23889625

Demers, P. A., Boffetta, P., Kogevinas, M., Blair, A., Miller, B. A., Robinson, C., Roscoe, R., Winter, P. D., Colin, D., Matos, E., & Vainio, H. (1995). Pooled reanalysis of cancer mortality among five cohorts of workers in wood-related industries. Scandinavian Journal of Work, Environment & Health, 21(3), 179–190. https://doi.org/10.5271/sjweh.26

Edwards, D., Voronina, A., Attwood, K., & Grand’Maison, A. (2021). Association between occupational exposures and sarcoma incidence and mortality: systematic review and meta-analysis. Systematic Reviews, 10(1), 1–19. https://doi.org/10.1186/s13643-021-01769-4

Elavarasi, D., Ramakrishnan, V., Subramoniam, T., Ramesh, A., Cherian, K. M., & Emmanuel, C. (2002). Genotoxicity study in lymphocytes of workers in wooden furniture industry. Current Science, 82(7), 869–873. http://www.jstor.org/stable/24106733

Gómez Yepes, M. E. (2010). Evaluación de la Incidencia de patologías respiratorias por exposición al polvo de madera de los carpinteros de Quindío, Colombia [Tesis, Universidad Politécnica de Catalunya]. https://dialnet.unirioja.es/servlet/dctes?codigo=92895

Guo, X., Dai, X., Wu, X., Cao, N., & Wang, X. (2021). Small but strong: Mutational and functional landscapes of micronuclei in cancer genomes. International Journal of Cancer, 148(4), 812–824. https://doi.org/10.1002/ijc.33300

Guzmán-Silva, J. A., Arango-Ramírez, M. A., Talavera-Fuentes, F. J., Anda-Rodríguez, R., Saucedo-Turrado, J., & Richter, H. G. (2018). Diagnóstico de la industria de transformación primaria de las maderas tropicales de México. Revista Mexicana de Ciencias Forestales, 6(28). https://doi.org/10.29298/rmcf.v6i28.267

Huff, J. (2001). Sawmill chemicals and carcinogenesis. Environmental Health Perspectives, 109(3), 209–212. https://doi.org/10.1289/ehp.01109209

International Agency for Research on Cancer [IARC]. (1995). Wood dust and formaldehyde (Vol. 62). IARC Monographs. https://www.ncbi.nlm.nih.gov/books/NBK493462/

International Agency for Research on Cancer [IARC]. (2012). Arsenic, metals, fibres, and dusts. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Arsenic-Metals-Fibres-And-Dusts-2012

Kirsch-Volders, M., Bolognesi, C., Ceppi, M., Bruzzone, M., & Fenech, M. (2020). Micronuclei, inflammation and auto-immune disease. Mutation Research - Reviews in Mutation Research, 786. https://doi.org/10.1016/j.mrrev.2020.108335

Krupina, K., Goginashvili, A., & Cleveland, D. W. (2021). Causes and consequences of micronuclei. Current Opinion in Cell Biology, 70, 91–99. https://doi.org/10.1016/j.ceb.2021.01.004

Kwon, M., Leibowitz, M. L., & Lee, J. H. (2020). Small but mighty: the causes and consequences of micronucleus rupture. Experimental and Molecular Medicine, 52(11), 1777–1786. https://doi.org/10.1038/s12276-020-00529-z

Llorente, J. L., Pérez-Escuredo, J., Alvarez-Marcos, C., Suárez, C., & Hermsen, M. (2009). Genetic and clinical aspects of wood dust related intestinal-type sinonasal adenocarcinoma: A review. In European Archives of Oto-Rhino-Laryngology (Vol. 266, Issue 1). https://doi.org/10.1007/s00405-008-0749-y

Meng, E., Yin, J., Jin, W., Mao, Y., Wu, Q., & Qiu, J. (2020). Wood dust exposure and risks of nasopharyngeal carcinoma: A meta-analysis. European Journal of Public Health, 30(4), 817–822. https://doi.org/10.1093/eurpub/ckz239

National Institute for Occupational Safety and Health [NIOSH]. (2019). OSHA Methods Dust from various types of wood. In CDC Pocket Guide to Chemicals Hazards (NIOSH Pocket Guide to Chemical Hazards). https://www.cdc.gov/niosh/npg/npgd0667.html

Pastor-Sierra, K., Espitia-Pérez, L., Espitia-Pérez, P., Peñata-Taborda, A., Brango, H., Galeano-Páez, C., Bru-Cordero, O. E., Palma-Parra, M., Díaz, S. M., Trillos, C., Briceño, L., Idrovo, Á. J., Miranda-Pacheco, J., Téllez, E., Jiménez-Vidal, L., Coneo-Pretelt, A., Álvarez, A. H., Arteaga-Arroyo, G., Ricardo-Caldera, D., … Varona-Uribe, M. (2023). Micronuclei frequency and exposure to chemical mixtures in three Colombian mining populations. Science of the Total Environment, 901(July). https://doi.org/10.1016/j.scitotenv.2023.165789

Ramoneda-Paniagua, A., & van der Haar, R. (2016). Update the wood dust exposure values included in the job-exposure matrix MatEmESp by making use of the WOODEX database. Archivos de Prevención de Riesgos Laborales, 19(1), 22–29. https://doi.org/10.12961/aprl.2016.19.01.4

Rekhadevi, P. V., Mahboob, M., Rahman, M. F., & Grover, P. (2009). Genetic damage in wood dust-exposed workers. Mutagenesis, 24(1), 59–65. https://doi.org/10.1093/mutage/gen053

Rojas-García, Y., & Peñalver-Paolini, A. (2015). Exposición ocupacional a polvo de madera y cáncer de senos paranasales. Medicina y Seguridad Del Trabajo, 61(238), 112–124. https://doi.org/10.4321/s0465-546x2015000100010

Romo-Huerta, M. J., Cervantes-Urenda, A. D. R., Velasco-Neri, J., Torres-Bugarín, O., & Valdivia, A. D. C. M. (2021). Genotoxicity Associated with Residual Monomers in Restorative Dentistry: A Systematic Review. Oral Health & Preventive Dentistry, 19(1), 471–480. https://doi.org/10.3290/j.ohpd.b2081469

Scarabelli, T. M., Corsetti, G., Chen-Scarabelli, C., & Saravolatz, L. D. (2021). Follicular B-cell lymphoma and particulate matter associated with environmental exposure to wood dust. American Journal of Case Reports, 22(1), 1–4. https://doi.org/10.12659/AJCR.929396

Sienes-Bailo, P., Llorente-Martín, E., Calmarza, P., Montolio-Breva, S., Bravo-Gómez, A., Pozo-Giráldez, A., Sánchez-Pascuala-Callau, J. J., Vaquer-Santamaría, J. M., Dayaldasani-Khialani, A., Cerdá-Micó, C., Camps-Andreu, J., Sáez-Tormo, G., & Fort-Gallifa, I. (2022). Implicación del estrés oxidativo en las enfermedades neurodegenerativas y posibles terapias antioxidantes. Advances in Laboratory Medicine, 3(4). https://doi.org/10.1515/almed-2022-0022

Tolbert, P. E., Shy, C. M., & Allen, J. W. (1992). Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutation Research/Environmental Mutagenesis and Related Subjects, 271(1), 69–77. https://doi.org/10.1016/0165-1161(92)90033-I

Torres-Bugarín, Dra. O., Santiago-Martínez, R., González-Barajas, A. J., Ríos-Esquivel, P. E., Ramos-Ibarra, M. L., & Arellano-García, E. (2024). Micronúcleos y anormalidades nucleares en células epiteliales orales: Herramienta eficaz y sencilla en la detección temprana de individuos altamente susceptibles a la inestabilidad genómica. Revista Bio Ciencias. https://doi.org/10.15741/revbio.11.e1650

Torres-Bugarín, O., Zavala-Cerna, M. G., Nava, A., Flores-García, A., & Ramos-Ibarra, M. L. (2014). Potential uses, limitations, and basic procedures of micronuclei and nuclear abnormalities in buccal cells. Disease Markers, 2014, 1–13. https://doi.org/10.1155/2014/956835

Ursini, C. L., Omodeo-Salè, E., Fresegna, A. M., Ciervo, A., Jemos, C., Maiello, R., Buresti, G., Colosio, C., Rubino, F. M., Mandić-Rajčević, S., Chiarella, P., Carbonari, D., Delrio, P., Maiolino, P., Marchetti, P., Boccia, R., Iavicoli, S., & Cavallo, D. (2019). Antineoplastic drug occupational exposure: a new integrated approach to evaluate exposure and early genotoxic and cytotoxic effects by no-invasive Buccal Micronucleus Cytome Assay biomarker. Toxicology Letters, 316(July), 20–26. https://doi.org/10.1016/j.toxlet.2019.08.022

Wultsch, G., Nersesyan, A., Kundi, M., Wagner, K. H., Ferk, F., Jakse, R., & Knasmueller, S. (2015). Impact of exposure to wood dust on genotoxicity and cytotoxicity in exfoliated buccal and nasal cells. Mutagenesis, 30(5), 701–709. https://doi.org/10.1093/mutage/gev034

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.