Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram negative bacterium of significant clinical relevance, responsible for severe nosocomial infections, particularly in immunocompromised patients. Its ability to acquire iron is crucial for its pathogenicity. In this research, we aimed to identify key membrane proteins involved in heme uptake as potential therapeutic targets. To achieve this, we conducted an in silico analysis, evaluating 47 potential membrane proteins using Expasy BLAST. We identified 7 candidate membrane proteins that contain the conserved FRAP and NPNL motifs, which are essential for heme binding. Additionally, we analysed the presence of FurBox sequences in the promoter regions to assess their regulation by iron. Our findings demonstrate that the identified membrane proteins possess the necessary motifs to facilitate their interaction with the heme group. Moreover, the presence of FurBox sequences suggests that these proteins are regulated by iron. In conclusion, these proteins represent promising therapeutic targets. Inhibiting them could reduce the virulence of P. aeruginosa by limiting iron up take and biofilm formation, thereby laying the groundwork for future studies on inhibitors targeting these proteins.
References
Alhazmi, A. (2015). Pseudomonas aeruginosa - Pathogenesis and Pathogenic Mechanisms. International Journal of Biology, 7(2). https://doi.org/10.5539/IJB.V7N2P44
Allen, C. E., & Schmitt, M. P. (2011). Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. Journal of bacteriology, 193(19), 5374–5385. https://doi.org/10.1128/JB.05508-11
Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS microbiology reviews, 27(2-3), 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X
Anzaldi, L. L., & Skaar, E. P. (2010). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infection and immunity, 78(12), 4977–4989. https://doi.org/10.1128/IAI.00613-10
Balhesteros, H., Shipelskiy, Y., Long, N. J., Majumdar, A., Katz, B. B., Santos, N. M., Leaden, L., Newton, S. M., Marques, M. V., & Klebba, P. E. (2017). TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA. Journal of bacteriology, 199(6), e00723-16. https://doi.org/10.1128/JB.00723-16
Banin, E., Vasil, M. L., & Greenberg, E. P. (2005). Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11076–11081. https://doi.org/10.1073/pnas.0504266102
Becker, K. W., & Skaar, E. P. (2014). Metal limitation and toxicity at the interface between host and pathogen. FEMS microbiology reviews, 38(6), 1235–1249. https://doi.org/10.1111/1574-6976.12087
Bonneau, A., Roche, B., Roche, B., Schalk, I. J., & Schalk, I. J. (2020). Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: an intricate interacting network including periplasmic and membrane proteins. Scientific Reports. https://doi.org/10.1038/S41598-019-56913-X
Bracken, C. S., Baer, M. T., Abdur-Rashid, A., Helms, W., & Stojiljkovic, I. (1999). Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. Journal of bacteriology, 181(19), 6063–6072. https://doi.org/10.1128/JB.181.19.6063-6072.1999
Bradley, J. M., Svistunenko, D. A., Wilson, M. T., Hemmings, A. M., Moore, G. R., & Le Brun, N. E. (2020). Bacterial iron detoxification at the molecular level. The Journal of biological chemistry, 295(51), 17602–17623. https://doi.org/10.1074/jbc.REV120.007746
Brewitz, H. H., Hagelueken, G., & Imhof, D. (2017). Structural and functional diversity of transient heme binding to bacterial proteins. Biochimica et biophysica acta. General subjects, 1861(3), 683–697. https://doi.org/10.1016/j.bbagen.2016.12.021
Budzikiewicz H. (2001). Siderophores of the human pathogenic fluorescent pseudomonads. Current topics in medicinal chemistry, 1(1), 1–6. https://doi.org/10.2174/1568026013395560
Candel, F. J., Santerre Henriksen, A., Longshaw, C., Yamano, Y., & Oliver, A. (2022). In vitro activity of the novel siderophore cephalosporin, cefiderocol, in Gram-negative pathogens in Europe by site of infection. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 28(3), 447.e1–447.e6. https://doi.org/10.1016/j.cmi.2021.07.018
Centola, G., Xue, F., & Wilks, A. (2020). Metallotherapeutics development in the age of iron-clad bacteria. Metallomics : integrated biometal science, 12(12), 1863–1877. https://doi.org/10.1039/d0mt00206b
Chen, H., & Zhou, H. X. (2005). Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic acids research, 33(10), 3193–3199. https://doi.org/10.1093/nar/gki633
Cornelis, P. (2010). Iron uptake and metabolism in pseudomonads. Applied microbiology and biotechnology, 86(6), 1637–1645. https://doi.org/10.1007/s00253-010-2550-2
Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome research, 14(6), 1188–1190. https://doi.org/10.1101/gr.849004
Dingsdag, S. A., Yap, B. C., Hunter, N., & Crossley, M. J. (2015). Amino acid-linked porphyrin-nitroimidazole antibiotics targeting Porphyromonas gingivalis. Organic & biomolecular chemistry, 13(1), 98–109. https://doi.org/10.1039/c4ob01841a
Draganova, E. B., Akbas, N., Adrian, S. A., Lukat-Rodgers, G. S., Collins, D. P., Dawson, J. H., Allen, C. E., Schmitt, M. P., Rodgers, K. R., & Dixon, D. W. (2015). Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry, 54(43), 6598–6609. https://doi.org/10.1021/acs.biochem.5b00666
Escolar, L., Pérez-Martín, J., & de Lorenzo, V. (1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. Journal of bacteriology, 181(20), 6223–6229. https://doi.org/10.1128/JB.181.20.6223-6229.1999
Fillat, M. F. (2014). The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Archives of biochemistry and biophysics, 546, 41–52. https://doi.org/10.1016/j.abb.2014.01.029
González-López, M. A., & Olivares-Trejo, J. J. (2009). The gene frpB2 of Helicobacter pylori encodes an hemoglobin-binding protein involved in iron acquisition. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 22(6), 889–894. https://doi.org/10.1007/s10534-009-9240-5
Gozzelino, R., & Arosio, P. (2015). The importance of iron in pathophysiologic conditions. Frontiers in Pharmacology. https://doi.org/10.3389/FPHAR.2015.00026
Griggs, D. W., Tharp, B. B., & Konisky, J. (1987). Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. Journal of bacteriology, 169(12), 5343–5352. https://doi.org/10.1128/jb.169.12.5343-5352.1987
Hamad, A. S., Edward, E. A., Sheta, E., Aboushleib, H. M., & Bahey-El-Din, M. (2022). Iron Acquisition Proteins of Pseudomonas aeruginosa as Potential Vaccine Targets: In Silico Analysis and In Vivo Evaluation of Protective Efficacy of the Hemophore HasAp. Vaccines, 11(1), 28. https://doi.org/10.3390/vaccines11010028
Hare, S. A. (2017). Diverse structural approaches to haem appropriation by pathogenic bacteria. Biochimica et biophysica acta. Proteins and proteomics, 1865(4), 422–433. https://doi.org/10.1016/j.bbapap.2017.01.006
Hoffmann, H., Hornef, M. W., Schubert, S., & Roggenkamp, A. (2001). Distribution of the outer membrane haem receptor protein ChuA in environmental and human isolates of Escherichia coli. International journal of medical microbiology : IJMM, 291(3), 227–230. https://doi.org/10.1078/1438-4221-00123
Hurdle, J. G., O'Neill, A. J., Chopra, I., & Lee, R. E. (2011). Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature reviews. Microbiology, 9(1), 62–75. https://doi.org/10.1038/nrmicro2474
Jiang, Y., Geng, M., & Bai, L. (2020). Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms, 8(8), 1222. https://doi.org/10.3390/microorganisms8081222
Kang, S. M., Kang, H. S., Chung, W. H., Kang, K. T., & Kim, D. H. (2024). Structural Perspectives on Metal Dependent Roles of Ferric Uptake Regulator (Fur). Biomolecules, 14(8), 981. https://doi.org/10.3390/biom14080981
Kontoghiorghes, G. J., & Kontoghiorghe, C. N. (2020). Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells, 9(6), 1456. https://doi.org/10.3390/cells9061456
Krewulak, K. D., & Vogel, H. J. (2008). Structural biology of bacterial iron uptake. Biochimica et biophysica acta, 1778(9), 1781–1804. https://doi.org/10.1016/j.bbamem.2007.07.026
Kümmerli, R. (2023). Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 36(4), 777–797. https://doi.org/10.1007/s10534-022-00480-8
Lee, J. W. (2023). Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms' Complex Regulation. Journal of microbiology (Seoul, Korea), 61(3), 273–276. https://doi.org/10.1007/s12275-023-00036-6
Liu, M., Liu, S., Huang, M., Wang, Y., Wang, M., Tian, X., Li, L., Yang, Z., Wang, M., Zhu, D., Jia, R., Chen, S., Zhao, X., Yang, Q., Wu, Y., Zhang, S., Huang, J., Ou, X., Mao, S., Gao, Q., … Cheng, A. (2021). An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer. Applied and environmental microbiology, 87(15), e0036721. https://doi.org/10.1128/AEM.00367-21
Lopes, J. A., Rghei, A. D., Thompson, B., Susta, L., Khursigara, C. M., & Wootton, S. K. (2022). Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis. Biomedicines, 10(12), 3162. https://doi.org/10.3390/biomedicines10123162
Louvel, H., Bommezzadri, S., Zidane, N., Boursaux-Eude, C., Creno, S., Magnier, A., Rouy, Z., Médigue, C., Saint Girons, I., Bouchier, C., & Picardeau, M. (2006). Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. Journal of bacteriology, 188(22), 7893–7904. https://doi.org/10.1128/JB.00711-06
Marson, N. A., Gallio, A. E., Mandal, S. K., Laskowski, R. A., & Raven, E. L. (2024). In silico prediction of heme binding in proteins. The Journal of biological chemistry, 300(5), 107250. https://doi.org/10.1016/j.jbc.2024.107250
Mayfield, J. A., Dehner, C. A., & DuBois, J. L. (2011). Recent advances in bacterial heme protein biochemistry. Current opinion in chemical biology, 15(2), 260–266. https://doi.org/10.1016/j.cbpa.2011.02.002
Mey, A. R., & Payne, S. M. (2001). Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Molecular microbiology, 42(3), 835–849. https://doi.org/10.1046/j.1365-2958.2001.02683.x
Mouriño, S., & Wilks, A. (2021). Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Advances in microbial physiology, 79, 89–132. https://doi.org/10.1016/bs.ampbs.2021.07.004
Murphy, E. R., Sacco, R. E., Dickenson, A., Metzger, D. J., Hu, Y., Orndorff, P. E., & Connell, T. D. (2002). BhuR, a virulence-associated outer membrane protein of Bordetella avium, is required for the acquisition of iron from heme and hemoproteins. Infection and immunity, 70(10), 5390–5403. https://doi.org/10.1128/IAI.70.10.5390-5403.2002
Naoe, Y., Nakamura, N., Rahman, M. M., Tosha, T., Nagatoishi, S., Tsumoto, K., Shiro, Y., & Sugimoto, H. (2017). Structural basis for binding and transfer of heme in bacterial heme-acquisition systems. Proteins, 85(12), 2217–2230. https://doi.org/10.1002/prot.25386
Nienaber, A., Hennecke, H., & Fischer, H. M. (2001). Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Molecular microbiology, 41(4), 787–800. https://doi.org/10.1046/j.1365-2958.2001.02555.x
Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). TonB-dependent transporters: regulation, structure, and function. Annual review of microbiology, 64, 43–60. https://doi.org/10.1146/annurev.micro.112408.134247
Noinaj, N., Kuszak, A. J., Gumbart, J. C., Lukacik, P., Chang, H., Easley, N. C., Lithgow, T., & Buchanan, S. K. (2013). Structural insight into the biogenesis of β-barrel membrane proteins. Nature, 501(7467), 385–390. https://doi.org/10.1038/nature12521
Normant, V., Kuhn, L., Munier, M., Hammann, P., Mislin, G. L. A., & Schalk, I. J. (2022). How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS infectious diseases, 8(1), 183–196. https://doi.org/10.1021/acsinfecdis.1c00525
Ochsner, U. A., Johnson, Z., & Vasil, M. L. (2000). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology (Reading, England), 146 ( Pt 1), 185–198. https://doi.org/10.1099/00221287-146-1-185
Otero-Asman, J. R., García-García, A. I., Civantos, C., Quesada, J. M., & Llamas, M. A. (2019). Pseudomonas aeruginosa possesses three distinct systems for sensing and using the host molecule haem. Environmental microbiology, 21(12), 4629–4647. https://doi.org/10.1111/1462-2920.14773
Page, M. G. P. (2019). The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 69(Suppl 7), S529–S537. https://doi.org/10.1093/cid/ciz825
Pasqua, M., Visaggio, D., Lo Sciuto, A., Genah, S., Banin, E., Visca, P., & Imperi, F. (2017). Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa. Journal of Bacteriology. https://doi.org/10.1128/JB.00472-17
Paul George, A. A., Lacerda, M., Syllwasschy, B. F., Hopp, M. T., Wißbrock, A., & Imhof, D. (2020). HeMoQuest: a webserver for qualitative prediction of transient heme binding to protein motifs. BMC bioinformatics, 21(1), 124. https://doi.org/10.1186/s12859-020-3420-2
Pearson, W. R. (2013). An introduction to sequence similarity ("homology") searching. Current protocols in bioinformatics, Chapter 3, 3.1.1–3.1.8. https://doi.org/10.1002/0471250953.bi0301s42
Perraud, Q., Cantero, P., Roche, B., Gasser, V., Normant, V., Kuhn, L., Hammann, P., Mislin, G. L. A., Ehret-Sabatier, L., Schalk, I. J., & Schalk, I. J. (2020). Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms. Molecular & Cellular Proteomics. https://doi.org/10.1074/MCP.RA119.001829
Post, S. J., Shapiro, J. A., & Wuest, W. M. (2019). Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm, 10(4), 505–512. https://doi.org/10.1039/c9md00032a
Reynolds, D., & Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6
Rosas, N. C., & Lithgow, T. (2022). Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends in microbiology, 30(6), 544–552. https://doi.org/10.1016/j.tim.2021.11.002
Sajeev-Sheeja, A., Smorodina, E., & Zhang, S. (2023). Structural bioinformatics studies of bacterial outer membrane beta-barrel transporters and their AlphaFold2 predicted water-soluble QTY variants. PloS one, 18(8), e0290360. https://doi.org/10.1371/journal.pone.0290360
Sánchez, L., Calvo, M., & Brock, J. H. (1992). Biological role of lactoferrin. Archives of disease in childhood, 67(5), 657–661. https://doi.org/10.1136/adc.67.5.657
Sánchez-Jiménez, A., Marcos-Torres, F. J., & Llamas, M. A. (2023). Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microbial biotechnology, 16(7), 1475–1491. https://doi.org/10.1111/1751-7915.14241
Sathe, N., Beech, P., Croft, L., Suphioglu, C., Kapat, A., & Athan, E. (2023). Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infectious medicine, 2(3), 178–194. https://doi.org/10.1016/j.imj.2023.05.003
Schalk, I. J., & Perraud, Q. (2023). Pseudomonas aeruginosa and its multiple strategies to access iron. Environmental microbiology, 25(4), 811–831. https://doi.org/10.1111/1462-2920.16328
Sheldon, J. R., Laakso, H. A., & Heinrichs, D. E. (2016). Iron Acquisition Strategies of Bacterial Pathogens. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0010-2015. https://doi.org/10.1128/microbiolspec.VMBF-0010-2015
Silale, A., & van den Berg, B. (2023). TonB-Dependent Transport Across the Bacterial Outer Membrane. Annual review of microbiology, 77, 67–88. https://doi.org/10.1146/annurev-micro-032421-111116
Smith, A. D., & Wilks, A. (2012). Extracellular heme uptake and the challenges of bacterial cell membranes. Current topics in membranes, 69, 359–392. https://doi.org/10.1016/B978-0-12-394390-3.00013-6
Thi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa Biofilms. International journal of molecular sciences, 21(22), 8671. https://doi.org/10.3390/ijms21228671
Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens (Basel, Switzerland), 11(3), 300. https://doi.org/10.3390/pathogens11030300
Ullah, I., & Lang, M. (2023). Key players in the regulation of iron homeostasis at the host-pathogen interface. Frontiers in immunology, 14, 1279826. https://doi.org/10.3389/fimmu.2023.1279826
Vlasova I. I. (2018). Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules (Basel, Switzerland), 23(10), 2561. https://doi.org/10.3390/molecules23102561
Wißbrock, A., Paul George, A. A., Brewitz, H. H., Kühl, T., & Imhof, D. (2019). The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Bioscience reports, 39(1), BSR20181940. https://doi.org/10.1042/BSR20181940
Wooldridge, K. G., & Williams, P. H. (1993). Iron uptake mechanisms of pathogenic bacteria. FEMS microbiology reviews, 12(4), 325–348. https://doi.org/10.1111/j.1574-6976.1993.tb00026.x
Wunderink, R. G., & Mendoza, D. L. (2007). Epidemiology of Pseudomonas aeruginosa in the Intensive Care Unit. https://doi.org/10.1007/978-3-540-34406 3_20
Xiao, J., Guo, S., Wang, D., & An, Q. (2024). Fenton-Like Reaction: Recent Advances and New Trends. Chemistry (Weinheim an der Bergstrasse, Germany), 30(24), e202304337. https://doi.org/10.1002/chem.202304337
Yang, F., Zhou, Y., Chen, P., Cai, Z., Yue, Z., Jin, Y., Cheng, Z., Wu, W., Yang, L., Ha, U. H., & Bai, F. (2022). High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection. Infection and immunity, 90(10), e0032922. https://doi.org/10.1128/iai.00329-22
Ye, P., Chang, J., Foo, L. F., & Yap, B. C. (2017). An early report: a modified porphyrin-linked metronidazole targeting intracellular Porphyromonas gingivalis in cultured oral epithelial cells. International journal of oral science, 9(3), 167–173. https://doi.org/10.1038/ijos.2017.31
Zhang, Y., Pan, X., Wang, L., & Chen, L. (2021). Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. Journal of drug targeting, 29(3), 249–258. https://doi.org/10.1080/1061186X.2020.1824235

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.