Morphological characterization of fig trees collected in the Region Lagunera
pdf_spa (Español (España))
pdf_eng

Keywords

FICUS CARICA
GERMOPLASM
MORPHOLOGY

Métricas de PLUMX 

Abstract

One of the strategies to address climate change is the use of adapted genotypes, such as local fig germplasm, which exhibits morphological and physiological traits that reduce water consumption and enhance adaptation to hot and arid climates, additionally, it possesses nutraceutical properties desirable for the international market. Hence, this study aimed to characterize fig tree collections at the morphological level and assess certain biophysical indicators of their adaptation to the regional climate. In the initial nursery phase, cuttings were collected from fig trees aged 25-40 years in the Lagunera Region. After 90 days in the nursery, foliar characterization was conducted by separating qualitative and quantitative leaf variables, which were analyzed through clustering and ANOVA, respectively. This analysis revealed three distinct groups in both qualitative and quantitative traits, highlighting significant biodiversity in morphological characteristics. Notably, the properties of latex, stomata, and trichomes stood out as key environmental protection mechanisms. Based on this analysis, it was determined that fig trees in the Lagunera Region exhibit biodiversity and long-term adaptation, possessing morphological biological mechanisms that enable them to tolerate the region’s hot and arid climate.

https://doi.org/10.15741/revbio.12.e1793
pdf_spa (Español (España))
pdf_eng

References

Almajali, D., Abdel-Ghani, A. H., & Migdadi, H. (2012). Evaluation of genetic diversity among Jordanian fig germoplasm accessions by morphological traits and ISSR markers. Scientia Horticulturae, 147, 8-19. http://dx.doi.org/10.1016/j.scienta.2012.08.029

Ammar, A., Aissa, I. B., Mars, M., & Gouiaa, M. (2020). Comparative phyisiological behavior of fig (Ficus carica L.) cultivars in response to water stress and recovery. Scienctia Horticulturae, 260 (27), 108881. https://doi.org/10.1016/j.scienta.2019.108881

Baziar, G., Jafari, M., Noori, M. S. S., & Samarfard, S. (2018). Evaluation of genetic diversity among Persian fig cultivars by morphological traits and RAPD markers. HortScience, 53(5), 613-619. https://doi.org/10.21273/HORTSCI11306-16

Ҫalişkan, O., & Polat, A. A. (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica l.) accessions from Eastern Mediterranean region of Turkey. Scientia Horticulturae , 128, 473-478. https://doi.org/10.1016/j.scienta.2011.02.023

Chavez-Barrantes, N., & Gutérrez-Soto, M. A. (2017a). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237-253. 10.15517/AM.V28I1.21903

Chavez-Barrantes, N., & Gutérrez-Soto, M. A. (2017b). Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana, 28(1), 255-271. http://dx.doi.org/10.15517/am.v28i1.21904

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO]. (2025). [Página de CONABIO]. (2025, Febrero 18). Explorador de cambio climático y biodiversidad. Reporte de áreas seleccionadas. CONABIO, IB-UNAM, CONANP, PNUD, INECC. http://www.biodiversidad.gob.mx/pais/cambio_climatico.html

Comisión Nacional del Agua [CONAGUA]. (2018). [Página de CONAGUA]. (2025, Marzo 25). Estadísticas del agua en México. Secretaría del Medio Ambiente y Recursos Naturales. 303 p. http://sina.conagua.gob.mx/publicaciones/EAM_2018.pdf

El Oualkadi, A., & Hajjaj, B. P. (2019). Use the biometric parameters to characterize the local fig (Ficus carica L) in Tafza area of Morocco. International Journal of Environment Agriculture and Biotechnology, 4(6), 1777-1780. 10.22161/ijeab.46.24

Fráguas, C. C., Pasqual, M., Gómez, de A., A., Pereira, A. R., & de Castro, E. M. (2012). Acclimatization and leaf anatomy of micropropagated fig plantlets. Revista Brasileira Fruticultura, 34(4), 1180-1188. https://doi.org/10.1590/S0100-29452012000400027

Gagaoua, M., Boucherba, N., Bouanane-Darenfed, A., Ziane, F., Nait-Rabah, S., Hafid K., & Boudechicha, H. R. (2014). Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex. Separation and Purification Technology, 132, 461-467. doi: https://doi.org/10.1016/j.seppur.2014.05.050

García-Ruíz, M. T., Mendoza-Castillo, V. M., Valadez-Moctezuma, E., & Muratalla-Lúa, A. (2013). Initial assessment of natural diversity in mexican fig landraces. Genetics and Molecular Research, 12(2), 3931-39-43. http://dx.doi.org/10.4238/2013.September.23.12

Garza-Alonso, C. A., Olivares-Sáenz, E., Gutiérrez-Díez, A., Vázquez-Alvarado, R. E., & López-Jiménez ,A. (2019). Visual Symptoms, vegetative growth, and mineral concentration in fig tree (Ficus carica L.) under macronutrient deficiencies. Agronomy, 9(12), 787. https://doi.org/10.3390/agronomy9120787

Giordano, C., Maleci L., Agati,G., & Petruccelli, R. (2019). Ficus carica L. leaf anatomy: tricomes and solid inclusions. Annals of Applied Biology, 176, 47-54. doi: https://doi.org/10.1111/aab.12557

Hu, J., Li, Y., & Jeong, R. (2020). Putative silicon transporters and effect of temperature stresses and silicon supplementation on their expressions and tissue silicon content in poinsettia. Plants, 9, 569. https://doi.org/10.3390/plants9050569

Inzunza-López, J. O., López-Ariza, B., Valdez-Cepeda, R. D., Mendoza, B., Sánchez-Cohen, I., & García-Herrera, G. (2011). La variación de las temperaturas extremas en la ‘Comarca Lagunera’ y cercanías. Revista Chapingo Serie Forestales y del Ambiente, 17, 45-61. 10. 5154/r.rchscfa. 2010.09.071

IPGRI & CIHEAM. (2003). [Página del CGIAR]. (2025, Enero 15). Descriptors for fig (Ficus carica). International Plant Genetic Resources Institute, Rome, Italy, and International Centre for Advanced Mediterranean Agronomic Studies, Paris, France, ISBN 92-9043-598-4. https://cgspace.cgiar.org/items/6fc9af4b-3971-4524-a085-2bfd5cdb1321

Klimko, M., & Truchan, M. (2006). Morphological variavility of the genus Ficus L. (Moracea) and its taxonomic implications. Acta Societatis Botanicorum Poloniae, 75(4), 309-324. 10.5586/asbp.2006.038

Konno, K. (2011). Planta latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemical 72, 1510-1530. https://doi.org/10.1016/j.phytochem.2011.02.016

Liu, C., Li, Y., Xu, L., Chen, Z, & He, N. (2019). Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 9, 5803. https://doi.org/10.1038/s41598-019-42335-2

Magaña-Álvarez, A., Vencioneck, D. J. C., Cameiro, T., Pérez-Brito, D., Tapia-Tussel, R., Aires, V. J., Higuera-Ciapara, I., Machado Bueno, F. P., & Ribeiro, F. A. A. (2016). Physical characteristics of the leaves and the latex of papaya plants infected with the papaya meleira virus. International Journal of Molecular Sciences, 17, 574. https://doi.org/10.3390/ijms17040574

Males, J., & Griffiths, H. (2017). Stomatal biology of CAM plants. Plant Physiology, 174, 550-560. https://doi.org/10.1104/pp.17.00114

Mamoucha, S., Fokialakis, N., & Christodoulakis, N. S. (2015) Leaf structure and histochemistry of Ficus carica (Moraceae), the fig tree. Flora, 218, 24-34. https://doi.org/10.1016/j.flora.2015.11.003

Mardinata, Z., Sabli, T. E., & Ulpah, S. (2021). Biochemical responses and leaf gas Exchange of fing (Ficus carica L.) to wáter stress, short-term elevated CO2 levels and brassionolide application. Horticulturae, 7, 73. https://doi.org/10.3390/horticulturae7040073

Márquez, G. S. Y., Figueroa, V. U., Zegbe, J. A., Arreola, A. J. G., Cueto, W. J. A., & Trejo, C. R. (2020). Leaf nutrient concentrations and dry biomass of fig plants as modified by the application of NPK: a preliminary study. Asian Journal of Agricultural and horticultural Research, 7(4), 30-41. 10.9734/ajahr/2020/v7i430102

Martínez-Bastidas, T. F., Romero-Castillo, R. A., Amarillas-Bueno, L. A., López-Meyer, M., Sañudo-Barajas, J. A., Osuna-Enciso, T., Basilio-Heredia, J., Lightbourn-Rojas, L. A., & León-Félix, J. (2017). Proteínas heterotriméricas: señalización de plantas en condiciones de estrés ambiental. Revista Fitotecnia Mexicana, 40(2), 169-180. https://doi.org/10.35196/rfm.2017.2.169-180

Martínez-Macías, K. J., Márquez-Guerrero, S. Y., Martínez-Sifuentes, A. R., & Segura-Castruita, M. A. (2022). Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates. Agriculture 2022, 12, 1816. https://doi.org/10.3390/agriculture12111816

Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine, Article ID974256. https://doi.org/10.1155/2013/974256

Mendoza-Castillo, V. M., Vargas-Canales, J. M., Calderón-Zavala, G., Mendoza-Castillo, Ma. Del C., & Santacruz-Varela, A. (2017). Intensive production systems of fig (Ficus carica L.) under greenhouse conditions. Experimental Agriculture, 53, 3, 339350. https://doi.org/10.1017/S0014479716000405

Mendoza-Castillo, V. M., Pineda-Pineda, J., Vargas-Canales, J. M., & Hernández-Arguello, E. (2019). Nutrition of fig (Ficus carica L.) under hydroponic and greenhouse conditions. Journal of Plant Nutrition, 42, 11-12, 1350-1365. https://doi.org/10.1080/01904167.2019.1609510

Muñoz, A. V., Berger N. F., & Lobos, L. G. (2017). Frutales de bajo requerimiento hídrico: higuera y tuna. In: Lobos L G., Veas V A., Balbontín N. C. Muñoz A. V., Franck B. N. & Portillas S. A. Manejo hídrico de frutales bajo condiciones edafoclimáticas de Limarí y Choapa. Instituto de Investigaciones Agropecuarias. Coquimbo, Chile. (pp. 41-58). Ed. INIA INTIHUASI. https://bibliotecadigital.ciren.cl/items/2485f0d0-ef81-4898-9aae-91aacbe46ae4

Niechayev, A. A., Jones, A. M., Rosenthal, D. M., & Davis, S. C. (2019). A model of environmental limitations on production of Agave Americana L. grown as a biofuel crop in semi-arid regions. Journal of Experimental Botany 70(22), 6549-6559. doi: https://doi.org/10.1093/jxb/ery383

Nigam, A. (2007). Lab manual in biochemistry immunology and biotechnology. Ed. Tata McGraw-Hill Education.

Ogunkule, A. T. J., & Oladele, F. A. (2008). Leaf epidermal studies in some Nigerian species of Ficus L. (Moraceae). Plant Systematics and Evolution, 274, 209-221. https://doi.org/10.1007/s00606-008-0044-9

Pacheco, R. G. E., & Arenas, R. H. (2017). Diversificación de mercados: estrategia para el sector agroalimentario. In: Oportunidades de exportación ante la creciente demanda mundial de alimentos. Claridades Agropecuarias, 276, 11-19. https://info.aserca.gob.mx/claridades/marcos.asp?numero=276

Pierantoni, M., Tenne, R., Rephael, B., Brumfeld, V., van Casteren, A., Kupczik, K., Oron, D., Addadi, L., & Weiner, S. (2018). Mineral deposits in Ficus leaves: morphologies and locations in relation to function. Plant Physiology, 176, 1751-1763. https://doi.org/10.1104/pp.17.01516

Podgornik, M., Vuk, I., Vrhovnik, I., & Mavsar, D. B. (2010). A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Scientia Horticulturae, 125, 380-389. https://doi.org/10.1016/j.scienta.2010.04.030

SAS Institute Inc. (2002-2010). SAS/STAT para Windows (Versión 9.3) [Software]. SAS. https://www.sas.com/es_mx/software/stat.html

Servicio Meteorológico Nacional [SMN]. (2022). [Página de CONAGUA]. (2022, Abril 7). Normales climatológicas por estado. Histórico para Durango 1951-2010. CONAGUA. https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=dgo

SIAP-SADER. (2025). [Página de SIAP-SADER]. (2025, Febrero 20). Producción agrícola. Cierre de la producción agrícola 1980-2023. SIAP-SADER. https://nube.siap.gob.mx/cierreagricola/

SMN-CONAGUA. (2024). [Página de CONAGUA]. (2024, Abril 7). Base de datos climatológicos 1980-2020. Estaciones Francisco I. Madero (5180) y Cartagena (10168). CONAGUA. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica

Sosnovsky, Y. (2015). Microscopical investigation of the laf architecture in greenhouse cultivated Ficus (Moraceae). Plant Systematics and Evolution, 301, 1669-1692. https://doi.org/10.1007/s00606-014-1184-8

The R Fundation for statistical Computing Platform. (2021). R (Versión 4.1.0.) [Software]. The R Project for Statistical Computing. https://www.r-project.org/

Upadhyay R. K. (2013). Effects of plant latex based anti-termite formulations on indian white termite Odontotermes abesus (Isoptera: odontotermitidae) in sub-tropical high infestation áreas Open Journal of Animal Science, 3(4), 281-294. http://dx.doi.org/10.4236/ojas.2013.34042

Urano, D., & Jones, A. M. (2014). Heterotrimeric G protein-coupled signaling in plants. Annual Review of Plant Biology, 65, 365-384. 10.1146/annurev-arplant-050213-040133

Villanueva, D. J., Cerano, P. J., Estrada, Á. J., Morán, M. R., & Constante, G. V. (2019). Precipitación y gasto reconstruido en la cuenca baja del río nazas. Revista Mexicana De Ciencias Forestales, 1(1), 25–37. https://doi.org/10.29298/rmcf.v1i1.650

Wilcox, D., Dove, B., McDavid, D., & Greer, D. (2002). UTHSCSA ImageTool for Windows (Versión 3.0) [Software]. UTHSCSA ImageTool.

Zhang, Y., Wan ,Y., Huo, B., Li, B., Jin, Y., & Hu, X. (2018). Extracts and components of Ficus carica leaves suppress survival, cell cycle, and migration of triplenegative breast cancer MDA-MB-231 cells. OncoTargets and Therapy, 11, 4377-4386. 10.2147/OTT.S171601

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.