Identification of carbapenem resistance genes in Pseudomonas aeruginosa
PDF (Español (España))

Keywords

pseudomonas aeruginosa
rpoB
blaVIM
blaIMP
antibiotic resistance

Métricas de PLUMX 

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen capable of causing different nosocomial infections. The bacterium has been reported to present intrinsic and acquired resistance to antibiotics due to the low permeability of its outer membrane, the overexpression of efflux pumps and the production of enzymes that degrade the antibiotic. The aim of the present study was to identify carbapenem resistance genes (metallo-β-lactamases VIM and IMP) in 50 strains of P. aeruginosa. The identification and antimicrobial susceptibility were performed using the automated VITEK-2 system. Subsequently, the rpoB, blaVIM and blaIMP genes were searched for by polymerase chain reaction; the phenotypic determination of metallo-b-lactamases was carried out by the double disk synergy test. The results obtained confirm that 100% of the strains analyzed correspond to P. aeruginosa. The sensitivity profile showed that 82% of the isolates were resistant to imipenem, while 46% were sensitive to amikacin; the presence of the blaIMP gene was evident in 90% of the isolates, being the most frequent, followed by blaVIM with 32% of the cases. Phenotypically, a positive result was obtained in 88% of the P. aeruginosa strains.

https://doi.org/10.15741/revbio.12.e1829
PDF (Español (España))

References

Ait Tayeb, L., Ageron, E., Grimont, F., & Grimont, P. A. (2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology, 156(5-6), 763-73. https://doi.org/10.1016/j.resmic.2005.02.009

Ali, F., Mirza, I. A., Waseem, H., & Zafar, H. (2023). Antibiotic sensitivity pattern of carbapenem-resistant Pseudomonas aeruginosa. Pakistan Armed Forces Medical Journal, 73(1), 33–37. https://doi.org/10.51253/pafmj.v73i1.6633

Ali, M. D. Y., & Abdulrahman, Z. F. (2020). Molecular identification, susceptibility pattern, and detection of some virulence genes in Pseudomonas aeruginosa isolated from burn patients. Plant Archives, 20(1), 2573-2580. http://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/2573-2580%20(399).pdf

Arakawa, Y., Shibata, N., Shibayama, K., Kurokawa, H., Yagi, T., Fujiwara, H., & Goto, M. (2000). Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. Journal of Clinical Microbiology, 38(1), 40-43. https://doi.org/10.1128/JCM.38.1.40-43.2000

Arbizú-Medina, O., García-Rosales, K., Castillo-Gómez, B., Mejía-Álvares, A., & Salinas, A. (2019). Carbapenemase en Pseudomonas aeruginosa en los hospitales de Managua, Nicaragua. Revista Torreón Universitario, 8(21), 16–24. https://doi.org/10.5377/torreon.v8i21.8851

Benie, C. K., Dadié, A., Guessennd, N., N'gbesso-Kouadio, N. A., Kouame, N. D., N'golo, D. C., Aka, S., Dako, E., Dje, K. M., & Dosso, M. (2017). Characterization of virulence potential of Pseudomonas aeruginosa isolated from bovine meat, fresh fish, and smoked fish. European Journal of Microbiology & Immunology (Bp), 7(1), 55-64. https://doi.org/10.1556/1886.2016.00039

Bolívar-Vargas, A. F., Torres-Caycedo, M. I., & Sánchez-Neira, Y. (2021). Biofilms de Pseudomonas aeruginosa como mecanismos de resistencia y tolerancia a antibióticos. Revisión narrativa. Revista de la Facultad de Ciencias de la Salud Universidad del Cauca, 23(2), 47-57. https://doi.org/10.47373/rfcs.2021.v23.1780

Cho, H. H., Kwon, G. C., Kim, S., & Koo, S. H. (2015). Distribution of Pseudomonas-derived cephalosporinase and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from Korea. Journal of Microbiology and Biotechnology, 25(7), 1154–1162. https://doi.org/10.4014/jmb.1503.03065

Costa, J. S. T. D., Lima, C. A., Vera-Leiva, A., San Martin Magdalena, I., Bello-Toledo, H., Domínguez Yévenes, M., Opazo-Capurro, A., Mella Montecinos, S., Quezada-Aguiluz, M., González-Rocha, G., & Grupo Colaborativo de Resistencia. (2021). Carbapenemasas en aislamientos de Pseudomonas aeruginosa resistentes a carbapenémicos aisladas en hospitales de Chile. Revista Chilena de Infectologia, 38(1), 81–87. https://doi.org/10.4067/S0716-10182021000100081

Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology (Reading), 166(1), 30–33. https://doi.org/10.1099/mic.0.000860

Fernández-Billón, M., Llambías-Cabot, A. E., Jordana-Lluch, E., Oliver, A., & Macià, M. D. (2023). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm, 5, 100129. https://doi.org/10.1016/j.bioflm.2023.100129

Gaballa, A., Cheng, R. A., Trmcic, A., Kovac, J., Kent, D. J., Martin, N. H., & Wiedmann, M. (2021). Development of a database and standardized approach for rpoB sequence-based subtyping and identification of aerobic spore-forming Bacillales. Journal of Microbiological Methods, 191, Article 106350. https://doi.org/10.1016/j.mimet.2021.106350

Guajardo-Lara, C. E., Hernández-Galván, N. N., Ayala-Gaytán, J. J., & Valdovinos-Chávez, S. B. (2021). Susceptibilidad a ceftolozano-tazobactam y ceftazidima-avibactam de Pseudomonas aeruginosa resistente a carbapenémicos. Revista del Instituto de Salud Pública de Chile, 5(1). https://doi.org/10.34052/rispch.v1i1.108

Guerra-Sarmiento, M., Ruíz-Martin-Leyes, F., Arzuza-Ortega, L., & Maestre-Serrano, R. (2021). Caracterización de bacilos gramnegativos multi-resistentes, aislados en pacientes hospitalizados en instituciones de salud de Barranquilla (Colombia). Revista Chilena de Infectologia, 38(2), 189–196. https://doi.org/10.4067/S0716-10182021000200189

Harris, M., Fasolino, T., Ivankovic, D., Davis, N. J., & Brownlee, N. (2023). Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms, 11(6), 1407. https://doi.org/10.3390/microorganisms11061407

Julca-García, A., Zavaleta-Verde, D., Asmat-Marrufo, P., & Mercado-Martínez, P. (2020). Detección fenotípica de metalo-β-lactamasas en Pseudomonas aeruginosa Trujillo-Perú. Revista Ciencia y Tecnología, 16(4), 43-49. https://revistas.unitru.edu.pe/index.php/PGM/article/view/3135

Kazmierczak, K. M., Rabine, S., Hackel, M., McLaughlin, R. E., Biedenbach, D. J., Bouchillon, S. K., Sahm, D. F., & Bradford, P. A. (2015). Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 60(2), 1067–1078. https://doi.org/10.1128/AAC.02379-15

Liao, C., Huang, X., Wang, Q., Yao, D., & Lu, W. (2022). Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Frontiers in Cellular and Infection Microbiology, 12, 926758. https://dx.doi.org/10.3389/fcimb.2022.926758

Martínez-Zavaleta, M. G., Fernández-Rodríguez, D., Hernández-Durán, M., Colín-Castro, C. A., de Lourdes García-Hernández, M., Becerra-Lobato, N., Franco-Cendejas, R., & López-Jácome, L. E. (2023). Acquired blaVIM and blaGES carbapenemase-encoding genes in Pseudomonas aeruginosa: a seven-year survey highlighting an increasing epidemiological threat. Pathogens, 12(10), 1256. https://doi.org/10.3390/pathogens12101256

Melgarejo-Touchet, N., Brítez, C., Busignani, S., Falcón, M., López, E., Laconich, M., Blasco, R., Arguello, R., Kawabata, A., Olmedo, M., Rojas, C., González, M., Salinas, J., Abreu, K., Pereira, J., Mereles, E., & Martínez, M. (2021). Caracterización molecular de carbapenemasas en bacilos gramnegativos circulantes en hospitales de Paraguay. Primer cuatrimestre 2021. Memorias del Instituto de Investigaciones en Ciencias de la Salud, 19(2), 49-58. https://doi.org/10.18004/mem.iics/1812-9528/2021.019.02.49

National Committee for Clinical Laboratory Standards [NCCLS]. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. Approved standard M7-A 4. National Committee for Clinical Laboratory Standards, Villanova, Pa 2018. https://clsi.org/media/1928/m07ed11_sample.pdf

Nicolau, J., & Oliver, A. (2010). Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciosas y Microbiología Clinica, 28: 19-28. https://dx.doi.org/10.1016/S0213-005X(10)70004-5

Ophelie, C., & Molin Q. (2016). Detección fenotípica de carbapenemasas en Pseudomonas aeruginosa en pacientes que acudieron al Hospital de Clínicas San Lorenzo de febrero a julio 2013. Memorias del Instituto de Investigaciones en Ciencias de la Salud, 14(1), 25-31. https://doi.org/10.18004/Mem.iics/1812-9528/2016.014(01)25-031

Perozo, A., Castellano, M., Chávez, T., Ling, E., & Arraiz, N. (2013). Evaluación de métodos fenotípicos para la detección de metalobetalactamasas en aislados clínicos de Pseudomonas aeruginosa. Casmera, 41(2), 115-126. https://www.redalyc.org/pdf/3730/373061993007.pdf

Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Diseases, 70(1), 119-123. http://dx.doi.org/10.1016/j.diagmicrobio.2010.12.002

Rada, A. M., De La Cadena, E., Agudelo, C. A., Pallares, C., Restrepo, E., Correa, A., Villegas, M. V., & Capataz, C. (2021). Genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates carrying blaVIM-2 and blaKPC-2 genes that spread on different genetic environment in Colombia. Frontiers in Microbiology, 12, Article 663020. https://doi.org/10.3389/fmicb.2021.663020

Radhika, A., Lakshmi, J. T., Ariyanachi, K., & Sakthivadivel, V. (2022). Detection of metallo beta-lactamase (MBL) producing Pseudomonas aeruginosa in a tertiary care hospital, Ghanpur, Medchal, India. Maedica, 17(1), 134–142. https://doi.org/10.26574/maedica.2022.17.1.134

Raouf, M. R., Sayed, M., Rizk, H. A., & Hassuna, N. A. (2018). High incidence of MBL-mediated imipenem resistance among Pseudomonas aeruginosa from surgical site infections in Egypt. Journal of Infection in Developing Countries, 12(7), 520–525. https://doi.org/10.3855/jidc.9936

Remolina G, S. A., Conde M, C. E., Escobar C, J. C., Leal C, A. L., Bravo O, J. S., Saavedra R, S. Y., Rosa N, Z. R., Sánchez F, N., Santana G, A. Y., Cortés C, S., Acosta R, E., Quintero B, L. A., López C, M. D. P., & Saavedra T, C. H. (2021). Tipos de carbapenemasas expresadas en Klebsiella spp., y Pseudomonas aeruginosa resistente a carbapenémicos en seis hospitales de alta complejidad de la Ciudad de Bogotá - Colombia. Revista Chilena de Infectología, 38(5), 720–723. https://doi.org/10.4067/s0716-10182021000500720

Saavedra, S. Y., Duarte, C., González, M. N., & Realpe, M. E. (2014). Caracterización de aislamientos de Pseudomonas aeruginosa productores de carbapenemasas de siete departamentos de Colombia. Biomédica, 34(Sup1), 217–23. https://doi.org/10.7705/biomedica.v34i0.1685

Salvador-Luján, G., García-de-la-Guarda, R., & Gonzales-Escalante, E. (2018). Caracterización de metalo-ᵦ-lactamasas en aislados clínicos de Pseudomonas aeruginosa recuperados de pacientes hospitalizados en el Hospital Militar Central. Revista Peruana de Medicina Experimental y Salud Pública, 35(4), 636-641. http://dx.doi.org/10.17843/rpmesp.2018.354.3755

Sawa, T., Kooguchi, K., & Moriyama, K. (2020). Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. Journal of Intensive Care, 8(13), 1-13. https://doi.org/10.1186/s40560-020-0429-6

Solórzano, J. W. P., & Parrales, V. E. P. (2021). Pseudomonas aeruginosa y su evolución de resistencia a los antibióticos en un hospital de segundo nivel en Portoviejo, Ecuador. QhaliKay, Revista de Ciencias de la Salud, 5(2), 50-56. https://doi.org/10.33936/qkrcs.v5i2.3002

Spilker, T., Coenye, T., Vandamme, P., &LiPuma, J. J. (2004). PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology, 42(5), 2074-2079. https://doi.org/10.1128/JCM.42.5.2074-2079.2004

Tacconelli, E., Magrini, N., Carmeli, Y., Harbarth, S., Kahlmeter, G., & Kluytmans, J.(2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/

Tapia, P. E. J., & Jaramillo R. E. K. (2023). Carbapenem-resistant Pseudomonas aeruginosa before and during the covid-19 pandemic, a review in Latin America. Salud, Ciencia y Tecnología, 3, 477. https://doi.org/10.56294/saludcyt2023477

Tenover, F. C., Nicolau, D. P., & Gill, C. M. (2022). Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerging Microbes & infections, 11(1), 811–814. https://doi.org/10.1080/22221751.2022.2048972

Varela-Rodríguez, E. N., Arvizu-Gómez, J. L., Martínez-Rizo, A. B., & González-Reyes, C. (2023). Molecular identification of Pseudomonas aeruginosa and antibiotic resistance testing. GSC Biological and Pharmaceutical Sciences, 24(2), 308-316. https://doi.org/10.30574/gscbps.2023.24.2.0335

Wang, W., & Wang, X. (2020). Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. Journal of Laboratory Medicine, 44(4), 197-203. https://doi.org/10.1515/labmed-2019-0162

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.