Abstract
The Lilium sp., or lily, is a plant of significant ecological, cultural, and commercial importance, valued in gardening, fragrances, and traditional medicine. Given the limitations of its natural reproduction, in vitro propagation is essential for its efficient and sustainable cultivation, producing disease-free plants with high genetic quality. A major challenge of this technique is contamination, which requires strict disinfection protocols. In this context, silver nanoparticles (AgNPs) stand out for their antimicrobial properties, reducing contamination and improving process efficiency, while also offering a sustainable alternative to harsh chemical treatments. In this study, AgNPs Argovit™ were evaluated at concentrations of 0, 25, 50, and 100 mg•L⁻¹ with immersion times of 5, 10, and 15 minutes. The best asepsis (94%) was achieved with 100 mg•L⁻¹ and 15 minutes of immersion, while the highest sprouting (7.03 microbulbs per explant) occurred with 25 mg•L⁻¹ and the same duration. AgNPs also reduced phenolic oxidation in explants, optimizing the in vitro propagation of Lilium sp. These findings highlight their potential for the commercial production and conservation of this ornamental species.
References
Alfosea-Simón, F. J., Burgos, L., & Alburquerque, N. (2025). Silver nanoparticles help plants grow, alleviate stresses, and fight against pathogens. Plants, 14(3), 428. https://doi.org/10.3390/plants14030428
Anisah, S., Ratnadewi, D., & Supena, E. D. J. (2023). Exogenous giberellic acid stimulates bulb dormancy breaking and the role of paclobutrazol in maintaining the size of harvested bulb of lily (Lilium sp.) cv. Tisento. Sains Malaysiana, 52(7), 1967–1976. http://doi.org/10.17576/jsm-2023-5207-06
Arévalo-Galarza, M., Rios-Florida, L., & García-Osorio, C. (2024). Paclobutrazol y prohexadiona de calcio en la producción de plantas enanas de Lilium sp. Agro-Divulgación, 4(1). https://doi.org/10.54767/ad.v4i1.282
Basit, A., & Ki-Byung, Lim. (2024). Recent approaches towards characterization, genetic, and genomic perspectives of genus Lilium. Genetic Resources and Crop Evolution, 72(1), 1–28. https://doi.org/10.1007/s10722-024-01969-6
Bello-Bello, J. J., & Spinoso-Castillo, J. L. (2023). Utilización de nanopartículas de plata en la micropropagación de plantas. Mundo Nano, 16(30), 1e–14e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69692
Chávez-García, J. A., Andrade-Rodríguez, M., Bello-Bello, J. J., Rueda-Barrientos, M. C., Guillén-Sánchez, D., & Sainz-Aispuro, M. de J. (2020). Nanopartículas de plata en el establecimiento in vitro de ápices de gladiolo. Revista Fitotecnia Mexicana, 43(4a), 557–564. https://doi.org/10.35196/rfm.2020.4-a.557
Dhorajiwala, R. (2022). How do lilies open? The regulation of flower opening in lilies, and how to control it to improve post-harvest quality [Tesis de maestría, Cardiff University]. https://orca.cardiff.ac.uk/id/eprint/157774/1
Fan, X., & Sun, H. (2024). Correction: Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium. Plant Methods, 20(1), 120. https://doi.org/10.1186/s13007-024-01262-8
García-Pérez, F., Sánchez-Hernández, C., Sánchez-Cabrera, I., Granados-Echegoyen, C. A., Dorantes-Jiménez, J., & Villanueva-Sánchez, E. (2023). Nuevo reporte de Bradysia sp. (Diptera: Sciaridae) asociada con Lilium sp. (Liliaceae) en Ocotlán de Morelos. Revista Mexicana de Ciencias Agrícolas, 14(7), 1-8. https://doi.org/10.29312/remexcav14i73133
Gong, H., Dusengemungu, L., Peng, Lv., & Igiraneza, C. (2023). Advancements in lily viruses management: Challenges and solutions in elimination and detection. Horticulturae, 9(7), 790. https://doi.org/10.3390/horticulturae9070790
Hernández-Díaz, J. A., Garza-García, J. J., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the Science of Food and Agriculture, 101(4), 1270–1287. https://doi.org/10.1002/jsfa.10767
Imbago-Lanchimba, J. P., & Gómez-Cabezas, M. A. (2021). Evaluación de grados día desarrollo en la fenología de variedades de Lilium sp., en la Florícola Florisol, San José de Minas [Tesis de licenciatura, Universidad Técnica del Norte]. https://repositorio.utn.edu.ec/handle/123456789/11145
Kamalashree, S., & Nayaka, K. S. (2023). Studies on effects of different sources of levels of calcium on growth, flowering, quality and yield in asiatic lily (Lilium spp.) [Tesis de maestría, Keladi Shivappa Nayaka University]. https://krishikosh.egranth.ac.in/items/a0717d39-7d18-444f-b25e-ed35a2ec54e7
Khan, M. S., Gao, J., Munir, I., Zhang, M., Liu, Y., Moe, T. S., Xue, J., & Zhang, X. (2021). Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. BioMed Research International, 2021(11), 9930210. https//doi.org/10.1155/2021/9930210
Lashin, I., Fouda, A., Gobouri, A. A., Azab, E., Mohammedsaleh, Z. M., & Makharita, R. R. (2021). Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L. Biomolecules, 11(3), 341. https://doi.org/10.3390/biom11030341
Mantilla, G., Chludil, H., & Martínez, G. (2023). Estudios preliminares del efecto del tratamiento con melatonina sobre la calidad postcosecha en flores de Lilium sp. Investigación Joven, 10(2), 226. https://revistas.unlp.edu.ar/InvJov/article/view/16083
Martínez-Martínez, S. Y., Arzate-Fernández, A. M., González-Pedroza, M. G., García-Núñez, H., & Cruz-Torres, E. D. L. (2024). Actividad antibacteriana de nanopartículas de plata biosintetizadas a partir de extractos de tres especies de Agave para inhibir Bacillus licheniformis. Polibotánica, (58), 149–157. https://doi.org/10.18387/polibotanica.58.10
Mosonyi, I. D., Tilly-Mándy, A., & Honfi, P. (2022). Bud clusters of Spathiphyllum cultivars: A novel way to propagate peace lilies in vitro. Acta Scientiarum Polonorum Hortorum Cultus, 21(2), 63–75. https://doi.org/10.24326/asphc.2022.2.6
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Noori, A., Hasanuzzaman, M., Roychowdhury, R., Sarraf, M., Afzal, S., Das, S., & Rastogi, A. (2024). Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry, 209(4), 108538. https://doi.org/10.1016/j.plaphy.2024.108538
Okoroafor, U. (2022). Microbial contamination in plant tissue culture and elimination strategies. Nigerian Agricultural Journal, 53(2), 348–355. http://www.ajol.info/index.php/naj
Orlikowski, L., Sas-Paszt, L., Wojdyła, A., & Orlikowska, T. (2023). The use of hydrogen peroxide and silver nanoparticles in horticulture. Journal of Horticultural Research, 31(2), 1–22. https://doi.org/10.2478/johr-2023-0037
Pałka, P., Cioć, M., Hura, K., Szewczyk-Taranek, B., & Pawłowska, B. (2023). Adventitious organogenesis and phytochemical composition of Madonna lily (Lilium candidum L.) in vitro modeled by different light quality. Plant Cell, Tissue and Organ Culture, 152(1), 99–114. https://doi.org/10.1007/s11240-022-02391-5
Pastelín-Solano, M. C., Ramírez-Mosqueda, M. A., Bogdanchikova, N., Castro-González, C. G., & Bello-Bello, J. J. (2020). Las nanopartículas de plata afectan la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews). Agrociencia, 54(1), 1–13. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1878
Patil, A. M., Gunjal, P. P., & Das, S. (2021). In vitro micropropagation of Lilium candidum bulb by application of multiple hormone concentrations using plant tissue culture technique. International Journal of Research in Applied Science and Biotechnology, 8(2), 244–253. https://doi.org/10.31033/ijrasb.8.2.32
Silva, J., & Rocio, J. (2024). Producción de tres cultivares de Lilium sp. (Starfighter, Zambessi y Pavia) bajo condiciones de invernadero, en Mancos-Yungay-Áncash [Tesis de licenciatura, AGR-HO]. https://hdl.handle.net/2050012996/6303
Singh, Y., Kumar, U., Panigrahi, S., Balyan, P., Mehla, S., Sihag, P., Sagwal, V., Singh, K. P., White, J. C., & Dhankher, O. P. (2023). Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. Plant Physiology and Biochemistry, 203(20), 108004. https://doi.org/10.1016/j.plaphy.2023.108004
Vázquez-Flores, X. (2024). Alternativa de uso de quitosano y nanopartículas de plata en el cultivo in vitro en Tillandsia ionantha Planch. [Tesis de licenciatura, Tecnológico Nacional de México, Veracruz]. https://rinacional.tecnm.mx
Winarto, B., Kartikaningrum, S., Rachmawati, F., Pramanik, D., Shintiavira, H., & Wegadara, M. (2024). Potential utilization of filaments and ovules as explant sources in in vitro propagation of Lilium sp. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13324–13324. https://doi.org/10.15835/nbha52113324
Zeng, Z., Wang, Y., Wang, H., Li, Y., Chen, B., Gou, R., Wang, D., Jiang, Y., Zheng, Y., & Hamed, K. E. (2024). Nanomaterials: Cross-disciplinary applications in ornamental plants. Nanotechnology Reviews, 13(1), 20240049. https://doi.org/10.1515/ntrev-2024-0049
Zuo, G., Li, K., Guo, Y., Niu, X., Yin, L., Wu, Z., Zhang, X., Cheng, X., Yu, J., & Zheng, S. (2024). Development and optimization of a rapid in vitro micropropagation system for the perennial vegetable night lily, Hemerocallis citrina Baroni. Agronomy, 14(2), 244. https://doi.org/10.3390/agronomía14020244

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.