Abstract
Arsenic (As) contamination is a significant global issue that demands the development of sustainable technologies to remove As, particularly from water resources. One such technology is adsorption by biochar, which has demonstrated to be effective for arsenate (As(V)) and arsenite (As(III)) removal. Due to its unique properties, bamboo species have emerged as a promising source for biochar production, for remediation purposes. In this study, we evaluated the adsorption capacity of As by biochar derived from the Mexican bamboo species Guadua inermis in aqueous solutions contaminated with As(V). The evaluation included kinetic studies and solutions with varying initial concentrations of As(V). The results demonstrated that biochar reaches equilibrium within approximately 3 hours, removing 68.9% of the initial arsenic. Additionally, it removed 37-68% of As from solutions containing 5-50 mg L⁻¹ of As(V). These findings contribute to the characterization of the As adsorption capacity of biochar derived from G. inermis bamboo, laying the groundwork for research and sustainable utilization of the species for biotechnological purposes, while also contributing to the development of technologies to ensure As-free water.
References
Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions, Journal of environmental management, 146, 444-450. https://doi.org/10.1016/j.jenvman.2014.07.029
Ahmad, M., Ok, Y. S., Kim, B. Y., Ahn, J. H., Lee, Y. H., Zhang, M., ... & Lee, S. S. (2016). Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of environmental management, 166, 131-139.https://doi.org/10.1016/j.jenvman.2015.10.006
Alcántara, M. N. (2013). Respuesta antioxidantes de Acacia farnesiana (L) Willd abjo condiicnones de estrés por arsenato [Tesis de Maestría, Universidad Auntónoma Metropolitana-Iztapalapa]. Index Catalog // UAM
Alcántara-Martínez, N., Rivera-Cabrera, F., Guizar, S., Anicacio-Acevedo, B.E., Buendía-González, L., & Volke-Sepúlveda, T. (2016). Tolerance, arsenic uptake and oxidative stress in Acacia farnesiana under arsenate-stress. International Journal of Phytoremediation. 18, 671–678. https://doi.org/10.1080/15226514.2015.1118432
Alchouron, J., Fuentes, A.L.B., Musserc, A., Vegaa, A.S., Mohand, D., Pittman, ChU., Mlsna, T.E., & Navarathna Ch. (2022). Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up. Sustainable Biochar for Water and Wastewater Treatment. In Mohan, D., Pittman Jr, C., & Mlsna, T. E. Sustainable biochar for water and wastewater treatment. (pp. 277-320). Ed. Elsevier.
Alchouron, J., Navarathna, C., Rodrigo, P.M., Snyder, A., Chludil, H. D., & Vega, A.S. (2021). Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. Journal of Colloid and Interface Science, 587, 767-779. https://doi.org/10.1016/j.jcis.2020.11.036
Alchouron, J., Navarathna, Ch., Chludil, H. D., Dewage, N. B., Perez, F., Hassan E. B., Pittman, ChU., Vega, A.S., & Mlsna, T. E. (2020). Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Science of The Total Environment, 706, 135943. https://doi.org/10.1016/j.scitotenv.2019.135943
Alfei, S., & Pandoli, O.G. (2024). Bamboo-Based Biochar: A Still Too Little-Studied Black Gold and Its Current Applications. Journal of Xenobiotics, 14(1), 416-451. https://doi.org/10.3390/jox14010026
Amen, R., Bashir, H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahidet, M., Hussain, M. M., Antoniadis, V., Shakoor, M. B., Al-Solaimani, S. G., Wang, H., Bundschuh, J., & Rinklebe, J. (2020). A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chemical Engineering Journal, 396, 125195. https://doi.org/10.1016/j.cej.2020.125195
ASTM International. (2022). Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis (ASTM D6866-22). https://www.astm.org
ASTM International. (2021). Standard Test Method for Chemical Analysis of Wood Charcoal (ASTM D 1762). https://www.astm.org
ASTM International. (2018). Standard Test Methods for pH of Water (ASTM D-1293). www.astm.org
Bakshi, S., Banik, C., Rathke, S.J., & Laird, D.A. (2018). Arsenic sorption on zero-valent iron-biochar complexes. Water research, 137, 153-163. https://doi.org/10.1016/j.watres.2018.03.021
Benis, K.Z., Damuchali, A.M., Soltan, J., & Mc Phedran, K.N. (2020). Treatment of aqueous arsenic–A review of biochar modification methods. Science of The Total Environment, 739, 139750. https://doi.org/10.1016/j.scitotenv.2020.139750
Bian, F., Zhong, Z., Zhang, X., Yang, Ch., & Gai, X. (2020). Bamboo–An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246, 125750. https://doi.org/10.1016/j.chemosphere.2019.125750
Campillo, J. H., & Rodríguez, A.R. (2004). Determinación del contenido de materia orgánica en suelos. Revista Digital Del Cedex, 134, 55.
Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., N. Prashant, N., A. K. Srivastava A.K., & Verma, S. (2023). Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery, 14(14), 15159-15185. https://doi.org/10.1007/s13399-022-03715-3
Chen, H., Gao, Y., Li, J., Fang, Z., Bolan, N., Bhatnagar, A., Gao, B., Hou, D., Wang, S., Song, H., Yang, X., Shaheen, S.M., Meng, J., Chen, W., Rinklebe, J., & Wang, H. (2022). Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Research, 1(1), 4. https://doi.org/10.1007/s44246-022-00005-5
Colín-Torres, C.G., Murillo-Jiménez, J. M., Del Razo, L.M., Sánchez-Peña, L.C., Becerra-Rueda, O.F., & Marmolejo-Rodríguez, A. J. (2014). Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico. Environmental Geochemistry and Health, 36(5), 845-854. https://doi.org/10.1007/s10653-014-9603-x
Dong, X., Ma, L.Q., Gress, J., Harris, W., & Li, Y. (2014). Enhanced Cr (VI) reduction and As (III) oxidation in ice phase: important role of dissolved organic matter from biochar. Journal of hazardous materials, 267, 62-70. https://doi.org/10.1016/j.jhazmat.2013.12.027
Duwiejuah, A. B., Abubakari, A. H., Quainoo, A. K., & Amadu, Y. (2020). Review of biochar properties and remediation of metal pollution of water and soil. Journal of Health and Pollution, 10(27), 200902. https://doi.org/10.5696/2156-9614-10.27.200902
Gutiérrez, G. O., & de Lira Fuentes, R. C. (2020). Elaboración de biocarbón para el aprovechamiento de residuos proveniente de las podas de bambú (Guadua angustifolia). Revista Mexicana de Agroecosistemas, 7(1), 1-9.
Huang, L., Wu, H., & van der Kuijp, T. J. (2015). The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. International journal of environmental health research, 25(4), 432-452. https://doi.org/10.1080/09603123.2014.958139
Ho, Y. S., Ng, J. C. Y., & McKay, G. (2001). Removal of lead(ii) from effluents by sorption on peat using second-order kinetics. Separation Science and Technology, 36(2), 241–261. https://doi.org/10.1081/SS-100001077
Hernandez-Mena, L. E., Pécoraa, A. A., & Beraldob, A.L. (2014). Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chemical Engineering Transactions, 37, 115-120. 10.3303/CET1437020
International Agency for Research on Cancer [IARC]. (2012). Arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization. https://publications.iarc.who.int/120
Kim, H. B., Kim, J. G., Kim, T., Alessi, D. S., & Baek, K. (2020). Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching. Chemical Engineering Journal, 393, 124687. https://doi.org/10.1016/j.cej.2020.124687
Liu, Z., Fei, B., & Jiang, Z. (2014). Combustion characteristics of bamboo-biochars. Bioresource technology, 167, 94-99. https://doi.org/10.1016/j.biortech.2014.05.023
Lyu, P., Lianfang, L., Xiaoya, H., Guanghui, W., & Changxiong, Z. (2022). Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As (III) and Cd (II) from aqueous solutions and insight into the mechanism of simultaneous purification. Science of The Total Environment, 823, 153743. https://doi.org/10.1016/j.scitotenv.2022.153743
Mamtimin, X., Song, W., Wang, Y., & Habibul, N. (2023). Arsenic adsorption by carboxylate and amino modified polystyrene micro-and nanoplastics: kinetics and mechanisms. Environmental Science and Pollution Research, 30(15), 44878-44892. https://doi.org/10.1007/s11356-023-25475-x
Monroy-Torres, R., Macias, A.E., Gallaga-Solorzano, J.C., Santiago-García, E.J., & Hernández, I. (2009). Arsenic in Mexican children exposed to contaminated well water. Ecology of food and Nutrition, 48(1), 59-75. https://doi.org/10.1080/03670240802575519
NOM-021-RECNAT-2000. (2002). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis (NOM-021-RECNAT-2000). http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf
Odega, C.A., Ayodele, O.O., Ogutuga, S.O., Anguruwa, G.T., Adekunle, A.E., & Fakorede, C.O. (2023). Potential application and regeneration of bamboo biochar for wastewater treatment: A review. Advances in Bamboo Science, 2,100012. https://doi.org/10.1016/j.bamboo.2022.100012
Organización Mundial de la Salud [OMS]. (2023, October 01). Arsenic in drinking water. Geneva. https://www.who.int/
Orozco-Gutiérrez, G., Flores-Garnica, J. G., & Ramírez-Ojeda, G. (2022). Determinación de la distribución potencial de bambú Guadua inermis en México: Determinación de la distribución potencial de bambú Guadua inermis en México. e-CUCBA, (19), 105-111. https://doi.org/10.32870/ecucba.vi19.269
Osuna-Martínez, C.C., Armienta, M.A., Bergés-Tiznado, M.E., & Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment, 752, 142062. https://doi.org/10.1016/j.scitotenv.2020.142062
Pérez-Alquicira, J., Aguilera-Lopez, S., Rico, Y., & Ruiz-Sanchez, E. (2021). A population genetics study of three native Mexican woody bamboo species of Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers. Botanical Sciences, 99(3), 542-559. https://doi.org/10.17129/botsci.2795
Pinisakul, A., Kruatong, N., Vinitnantharat, S., Wilamas, P., Neamchan, R., Sukkhee, N., Werner, D., Wilamas, P., & Sanghaisuk, S. (2023). Arsenic, iron, and manganese adsorption in single and trinary heavy metal solution systems by bamboo-derived biochars. J. Carbon Res, 9(2), 40. https://doi.org/10.3390/c9020040
Rahman, MdA., Lamb, D., Rahman, M. M., Bahar, MdM., & Sanderson, P. (2022). Adsorption–Desorption Behavior of Arsenate Using Single and Binary Iron-Modified Biochars: Thermodynamics and Redox Transformation. ACS omega, 7(1), 101-117. https://doi.org/10.1021/acsomega.1c04129
Ramírez-Ojeda, G., Orozco-Gutiérrez, G., Ruiz-Sánchez, E., Flores-Garnica, G., & Rubio-Camacho, E. A. (2023). Descriptores ecológicos y aptitud ambiental de 10 especies de bambú en México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. CIRPAC. https://www.researchgate.net/publication/373173458_DESCRIPTORES_ECOLOGICOS_Y_APTITUD_AMBIENTAL_DE_10_ESPECIES_DE_BAMBU_DE_MEXICO
Sharma, B., Shah, D. U., Beaugrand, J., Janeček, E. R., Scherman, O. A., & Ramage, M. H. (2018). Chemical composition of processed bamboo for structural applications. Cellulose, 25, 3255-3266. https://doi.org/10.1007/s10570-018-1789-0
Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. (2013). Adsorption of As (III) and As (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1(4), 981-988. https://doi.org/10.1016/j.jece.2013.08.009
Srivastav, A. L., Pham, T. D., Izah, S. C., Singh, N., & Singh, P. K. (2022). Biochar adsorbents for arsenic removal from water environment: a review. Bulletin of environmental contamination and toxicology, 108(4), 616-628. https://doi.org/10.1007/s00128-021-03374-6
Tan, Z., Xiang, J., Su, S., Zeng, H., Zhou, C., Sun, L., Hu, S., & Qiu, J. (2012). Enhanced capture of elemental mercury by bamboo-based sorbents. Journal of hazardous materials, 239, 160-166. https://doi.org/10.1016/j.jhazmat.2012.08.053
Van, Vinh N., Zafar, M., Behera, S. K., & Park, H. S. (2015). Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International Journal of Environmental Science and Technology, 12, 1283-1294. https://doi.org/10.1007/s13762-014-0507-1
Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y., Kirkham M.B., & Rinklebe J. (2017). Interaction of arsenic with biochar in soil and water: a critical review. Carbon, 113, 219-230. https://doi.org/10.1016/j.carbon.2016.11.032
Wang, W., Wang, X., Wang, X., Yang, L., Wu, Z., Xia, S., & Zhao, J. (2013). Cr (VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences, 25(9), 1726-1735. https://doi.org/10.1016/S1001-0742(12)60247-2
Wendimu, G., Zewge, F., & Mulugeta, E. (2017). Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions. Journal of Water Process Engineering, 16, 123–131. https://doi.org/10.1016/j.jwpe.2016.12.012
Xu, Y., Xie, X., Feng, Y., Ashraf, M. A., Liu, Y., Su, C., Qian, K., & Liu, P. (2020). As (III) and As (V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging. Bioresource technology, 304, 122978. https://doi.org/10.1016/j.biortech.2020.122978
Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lin, X., Che, L., Ye, Z., & Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974-984. https://doi.org/10.1007/s11356-015-4233-0
Zhang, Z., Yin, N., Du, H., Cai, X., & Cui, Y. (2016). The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Chemosphere, 151, 108-115. https://doi.org/10.1016/j.chemosphere.2016.02.065
Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286-292. https://doi.org/10.1016/j.cej.2013.04.077
Zheng, X., Wu, Q., Huang, C., Wang, P., Cheng, H., Sun, C., Zhu, J., Xu, H., Ouyang, K., Guo, J, & Liu, Z. (2023). Synergistic effect and mechanism of Cd (II) and As (III) adsorption by biochar supported sulfide nanoscale zero-valent iron. Environmental Research, 231, 116080. https://doi.org/10.1016/j.envres.2023.116080
Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource technology, 152, 538-542. https://doi.org/10.1016/j.biortech.2013.11.021
Zhu, N., Yan, T., Qiao, J., Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40. https://doi.org/10.1016/j.chemosphere.2016.08.036

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.