Increased linoleic and oleic acid production in the mycelium of the edible mushroom Lentinula edodes produced by submerged
PDF (Español (España))

Keywords

Mycelium
submerged fermentation
shiitake
Fruiting bodies
omega fatty acid

Métricas de PLUMX 

Abstract

Edible mushrooms contain linoleic, α-linolenic, oleic acid (ω-6, ω-3, ω-9), essential for human metabolism. In balanced ratios (1:1 or 2:1; ω-6/ω-3) they can help prevent obesity, while an unbalanced ratio is associated with adipogenesis. They are traditionally extracted from fruiting bodies, 60-90 days old. In this sense, the effect of the culture medium on the kinetics of mycelium production, fruiting bodies of Lentinula edodes (shiitake), as well as the characterization of fatty acids and their comparison with commercial shiitake were evaluated. Thus, the highest mycelium production was obtained from the wheat bran (WB) culture medium during 15 days of incubation by submerged fermentation (SmF). Furthermore, WB presented a higher percentage of linoleic acid (ω-6); and the oleic acid (ω-9) content was 7 times higher than that of commercial shiitake, thereby improving the ratio of unsaturated/saturated fatty acids. Thus, SmF is a cultivation alternative that reduces mycelium production time and increases shiitake fatty acids production, while preserving its nutraceutical components. Further studies on the chemical composition and toxicological effects are needed to consider L. edodes mycelium as a nutraceutical supplement.

https://doi.org/10.15741/revbio.13.e1980
PDF (Español (España))

References

Adil, B., Xiang, Q., He, M., Wu, Y., Asghar, M. A., Arshad, M., Qin, P., Gu, Y., Yu, X., Zhao, K., Zhang, X., Ma, M., Chen, Q., Chen, X., & Yan, Y. (2020). Effect of sodium and calcium on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Lentinus edodes. AMB Express, 10(1), 1-11. https://doi.org/10.1186/s13568-020-00985-w

Ahmad, I., Arif, M., Xu, M., Zhang, J., Ding, Y., & Lyu, F. (2023). Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. In Trends in Food Science and Technology, 134, 123–135. https://doi.org/10.1016/j.tifs.2023.03.007

Alagawany, M., Elnesr, S., Farag, M., Abd El-Hack, M., Khafaga, A., Taha, A., Tiwari, R., Iqbal Yatoo, M., Bhatt, P., Khurana, S., & Dhama, K. (2019). Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals, 9(8), 1-19. https://doi.org/10.3390/ani9080573

Bakratsas, G., Polydera, A., Katapodis, P., & Stamatis, H. (2021). Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods, 4, 1-14. https://doi.org/10.1016/j.fufo.2021.100086

Bellettini, M., Fiorda, F., Maieves, H., Teixeira, G., Ávila, S., Hornung, P., Júnior, A., & Ribani, R. (2019). Factors affecting mushroom Pleurotus spp. In Saudi Journal of Biological Sciences, 26(4), 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005

Bulam, S., Sule, N., & Peksen, A. (2021). A review on fatty acid profiles of edible wild mushrooms from Turkey. European Food Science and Engineering, 2(2), 46-51. https://dergipark.org.tr/tr/pub/efse

Chen, F., Martín, C., Finell, M., & Xiong, S. (2022). Enabling efficient bioconversion of birch biomass by Lentinula edodes: regulatory roles of nitrogen and bark additions on mushroom production and cellulose saccharification. Biomass Corversion and Biorefinery, 12, 1217–1227. https://doi.org/10.1007/s13399-020-00794-y

Christi, W. W., & Harwoo, J. (2020). Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays in Biochemistry, 64(3), 401-421. https://doi.org/10.1042/EBC20190082

Chung, I., Kim, S., Han, J., Kong, W., Jung, M., & Kim, S. (2020). Fatty acids and stable isotope ratios in shiitake mushrooms (Lentinula edodes) indicate the origin of the cultivation substrate used: A preliminary case study in Korea. Foods, 9(9), 1-13. https://doi.org/10.3390/foods9091210

Colla, I. M., de, O. B. Q., Bertéli, M. B. D., de Freitas, J. D. S., Avelino, K. V., Ruiz, S. P., do Valle, J. S., Linde, G. A., & Colauto, N. B. (2023). Carbon-to-nitrogen ratios on laccase and mushroom production of Lentinus crinitus. International Journal of Environmental Science and Technology, 20(4), 3941–3952. https://doi.org/10.1007/s13762-022-04233-5

Dimitrijevic, M., Mitic, V., Nikolic, J., Djordjevic, A., Mutic, J., Stankov, V., & Stojanovic, G. (2019). First Report about Mineral Content, Fatty Acids Composition and Biological Activities of Four Wild Edible Mushrooms. Chemistry and Biodiversity, 16(2), 1-22. https://doi.org/10.1002/cbdv.201800492

Dudekula, U. T., Doriya, K., & Devarai, S. K. (2020). A critical review on submerged production of mushroom and their bioactive metabolites. Biotech, 10(8), 337. https://doi.org/10.1007/s13205-020-02333-y

Egan, H., Kirk, R., & Sawyer, R. (1981). Chemical Analysis of Food (8a ed.). Persons.

El-Ramady, H., Abdalla, N., Badgar, K., Llanaj, X., Törős, G., Hajdú, P., Eid, Y., & Prokisch, J. (2022). Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability, 14(9), 1-30. https://doi.org/10.3390/su14094941

Feng, Y., Xu, H., Sun, Y., Xia, R., Hou, Z., Li, Y., Wang, Y., Pan, S., Li, L., Zhao, C., Ren, H., & Xin, G. (2023). Effect of light on quality of preharvest and postharvest edible mushrooms and its action mechanism: A review. Trends in Food Science and Technology, 139, 104-119. https://doi.org/10.1016/j.tifs.2023.104119

Garcia, C., Andersen, C., & Blesso, C. (2023). The Role of Lipids in the Regulation of Immune Responses. Nutrients, 15(8), 1-27. https://doi.org/10.3390/nu15183899

Kapoor, B., Kapoor, D., Gautam, S., Singh, R., & Bhardwaj, S. (2021). Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Current Nutrition Reports, 10(3), 232-242. https://doi.org/10.1007/s13668-021-00363-3

Krupodorova, T., Barshteyn, V., & Sekan, A. (2021). Review of the basic cultivation conditions influence on the growth of basidiomycetes. Current Research in Environmental and Applied Mycology, 11, 494–531. https://doi.org/10.5943/cream/11/1/34

Łysakowska, P., Sobota, A., & Wirkijowska, A. (2023). Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules, 28(14), 1-15. https://doi.org/10.3390/molecules28145393

Martínez-Ramírez, F., Riecan, M., Cajka, T., & Kuda, O. (2023). Analysis of fatty acid esters of hydroxy fatty acids in edible mushrooms. LWT, 173, 1-6. https://doi.org/10.1016/j.lwt.2022.114311

Radzikowska, U., Rinaldi, A., Sözener, Z., Karaguzel, D., Wojcik, M., Cypryk, K., Akdis, M., Akdis, C. A., & Sokolowska, M. (2019). The influence of dietary fatty acids on immune responses. Nutrients, 11(12), 1-52. https://doi.org/10.3390/nu11122990

Saini, R., Prasad, P., Sreedhar, R., Naidu, K., Shang, X., & Keum, Y. (2021). Omega−3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants, 10(10), 1-23. https://doi.org/10.3390/antiox10101627

Sheng, K., Wang, C., Chen, B., Kang, M., Wang, M., Liu, K., & Wang, M. (2021). Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chemistry, 358, 1-14. https://doi.org/10.1016/j.foodchem.2021.129883

Smiderle, F., Olsen, L., Ruthes, A., Czelusniak, P., Santana-Filho, A., Sassaki, G., Gorin, P., & Iacomini, M. (2012). Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydrate Polymers, 87(1), 368–376. https://doi.org/10.1016/j.carbpol.2011.07.063

Sun, L. bin, Zhang, Z. yong, Xin, G., Sun, B. xin, Bao, X. jing, Wei, Y. yun, Zhao, X. mei, & Xu, H. ran. (2020). Advances in umami taste and aroma of edible mushrooms. Trends in Food Science and Technology, 96, 176–187. https://doi.org/10.1016/j.tifs.2019.12.018

Venturella, G., Ferraro, V., Cirlincione, F., & Gargano, M. (2021). Medicinal mushrooms: Bioactive compounds, use, and clinical trials. International Journal of Molecular Sciences, 22(2), 1-31. https://doi.org/10.3390/ijms22020634

Wang, M., & Zhao, R. (2023). A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. Journal of Future Foods, 3(1), 1-7. https://doi.org/10.1016/j.jfutfo.2022.09.001

Watanabe, Y., & Tatsuno, I. (2020). Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. Journal of Atherosclerosis and Thrombosis, 27(3), 183-198. https://doi.org/10.5551/jat.50658

Xv, W., Zheng, Q. W., Ye, Z. W., Wei, T., Guo, L. Q., Lin, J. F., & Zou, Y. (2024). Submerged culture of edible and medicinal mushroom mycelia and their applications in food products: a review. International Journal of Medicinal Mushrooms, 26(3).

Yan, M., Feng, J., Liu, Y., Hu, D., & Zhang, J. (2023). Functional Components from the Liquid Fermentation of Edible and Medicinal Fungi and Their Food Applications in China. Foods, 12(10). https://doi.org/10.3390/foods12102086

Yu, C., Zhang, Y., Ren, Y., Zhao, Y., Song, X., Yang, H., & Chen, M. (2023). Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Science and Nutrition, 11(7), 4038–4046. https://doi.org/10.1002/fsn3.3392

Zhang, B., Guan, Y., Hu, P., Chen, L., Xu, G., Liu, L., & Cheung, P. (2019). Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Critical Reviews in Biotechnology, 39(4), 541-554. https://doi.org/10.1080/07388551.2019.1577798

Zhang, H., Gao, X., Guo, X., Li, K., Li, S., Sinclair, A., & Li, D. (2021). Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clinical Nutrition, 40(7), 4538–4550. https://doi.org/10.1016/j.clnu.2021.05.025

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.