Repellent effect of ethanol extracts of balche (Lonchocarpus oliganthus) and neem (Azadirachta indica) on Bemisia tabaci (Gennadius, 1889) in greenhouse assays
PDF (Español (España))

Keywords

Insect repellency
agricultural pest
pest control
Capsicum chinense
botanical insecticide

Métricas de PLUMX 

Abstract

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) (Gennadius, 1889) is one of the most devastating pests in crop production worldwide. The development of insecticide resistance population of B. tabaci requieres new alternatives with low environmental impact. The objective of this work was to evaluate the effect of ethanol leaves extracts of balché (Lonchocarpus oliganthgus) and neem (Azadirachta indica), single or in combination, on adult repellency and oviposition deterrence on B. tabaci. A polar fraction of extracts was obtained using ethanol as solvent. After evaporation, the extracts were dissolved in water and applied to habanero pepper plants that were infested afterwards. The parameters of adult repellency index (RI) and oviposition deterrence index (ODI) were established. The extracts of L. oliganthus caused high oviposition deterrence index at 48 h (ODI=-81. 6), furthermore, its effect was also observed after 7 days of extract application, which caused a decrease by 50% in the population density of eggs. The use of ethanol extract of L. oliganthus represents a feasible option in the prospection of botanical derivatives for B. tabaci management.

https://doi.org/10.15741/revbio.13.e2032
PDF (Español (España))

References

Almeida Filho, L. C., Tabosa, P. M., Hissa, D. C., Vasconcelos, I. M., & Carvalho, A. F. (2018). First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin‐trypsin inhibitor purified from Lonchocarpus sericeus seeds. Pest Management Science, 74(6), 1362-1373; http://dx.doi.org/10.1002/ps.4812

Baldin, E. L., Crotti, A. E., Wakabayashi, K. A., Silva, J. P., Aguiar, G. P., Souza, E. S., Veneziani R. C. S. & Groppo, M. (2013). Plant-derived essential oils affecting settlement and oviposition of Bemisia tabaci (Genn.) biotype B on tomato. Journal of Pest Science, 86, 301-308; http://dx.doi.org/10.1007/s10340-012-0462-x

Baldin, E. L., Aguiar, G. P., Fanela, T. L., Soares, M. C., Groppo, M., & Crotti, A. E. (2015). Bioactivity of Pelargonium graveolens essential oil and related monoterpenoids against sweet potato whitefly, Bemisia tabaci biotype B. Journal of Pest Science, 88, 191-199; http://dx.doi.org/10.1007/s10340-014-0580-8

Birch, N., Crombie, L., & Crombie, W. M. (1985). Rotenoids of Lonchocarpus salvadorensis: their effectiveness in protecting seeds against bruchid predation. Phytochemistry, 24(12), 2881-2883; http://dx.doi.org/10.1016/0031-9422(85)80019-4

Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F., Casiraghi, M., & Labra, M. (2015). A DNA barcoding approach to identify plant species in multiflower honey. Food Chemistry, 170, 308-315. https://doi.org/10.1016/j.foodchem.2014.08.060

Carnero-Avilés, L., Cerna-Chávez, E., Sánchez-Flores, O. Á., Ochoa-Fuentes, Y. M., García-Nevarez, G., Arispe-Vázquez, J. L., Ramírez-Sánchez, S. E. & Cadena-Zamudio, D. A. (2024). Identification and Distribution of Bemisia tabaci 1 Cryptic Species at Sinaloa, Mexico. Southwestern Entomologist, 49(1), 88-99; http://dx.doi.org/10.3958/059.049.0108

Cruz-Estrada, A., Gamboa-Angulo, M., Borges-Argáez, R., & Ruiz-Sánchez, E. (2013). Insecticidal effects of plant extracts on immature whitefly Bemisia tabaci Genn.(Hemiptera: Aleyroideae). Electronic Journal of Biotechnology, 16(1), 6-6; http://dx.doi.org/10.2225/vol16-issue1-fulltext-6

da Silva, M. J., de Queiroz, L. P., Tozzi, A. M. G. D. A., Lewis, G. P., & de Sousa, A. P. (2012). Phylogeny and biogeography of Lonchocarpus sensu lato and its allies in the tribe Millettieae (Leguminosae, Papilionoideae). Taxon, 61(1), 93-108; https://doi.org/10.1002/tax.611007

Deskins, C. (2013). Phytochemical investigation of Lonchocarpus species: A search for antioxidant compounds. Ph. D. Dissertation. The University of Alabama in Huntsville; https://doi.org/10.1177/1934578X1400900421

Deskins, C. E., Vogler, B., Dosoky, N. S., Chhetri, B. K., Haber, W. A., & Setzer, W. N. (2014). Phytochemical investigations of Lonchocarpus bark extracts from Monteverde, Costa Rica. Natural Product Communications, 9(4); http://dx.doi.org/10.1177/1934578X1400900421

Dunning, L. T., & Savolainen, V. (2010). Broad‐scale amplification of matK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society, 164(1), 1-9; http://dx.doi.org/10.1111/j.1095-8339.2010.01071.x

Esquivel-Chi, M. C., Ruiz-Sánchez, E., Ballina-Gómez, H. S., Martín, J., Reyes, F., Carnevali, G., Tapia-Muñoz, J. L. & Gamboa-Angulo, M. (2024). Repellent screening of ethanol extracts from plants of the Yucatan Peninsula against Bemisia tabaci (Gennadius, 1889) and chemical profile of Malpighia glabra L. leaves. Journal of Plant Diseases and Protection, 1-11; http://dx.doi.org/10.1007/s41348-024-00901-5

Hameed, O., Qayyum, M. A., Saeed, S., Naeem-Ullah, U., & Ali, M. (2023). Bio-pesticides as an ecofriendly management of Whitefly, Bemisia tabaci Mitotype Asia II-1. International Journal of Tropical Insect Science, 43(2), 547-560; http://dx.doi.org/10.1007/s42690-023-00964-1

Ioset, J. R., Marston, A., Gupta, M. P., & Hostettmann, K. (2001). Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. Journal of Natural Products, 64(6), 710-715; http://dx.doi.org/10.1021/np000597w

Kisiriko, M., Anastasiadi, M., Terry, L. A., Yasri, A., Beale, M. H., & Ward, J. L. (2021). Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules, 26(21), 6343; http://dx.doi.org/10.3390/molecules26216343

Kumar, P., & Poehling, H. M. (2006). Persistence of soil and foliar azadirachtin treatments to control sweetpotato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomatoes under controlled (laboratory) and field (netted greenhouse) conditions in the humid tropics. Journal of Pest Science, 79, 189-199; http://dx.doi.org/10.1007/s10340-006-0133-x

Lengai, G. M., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, e00239; http://dx.doi.org/10.1016/j.sciaf.2019.e00239

Luzuriaga-Quichimbo, C. X., Blanco-Salas, J., Cerón-Martínez, C. E., Alías-Gallego, J. C., & Ruiz-Téllez, T. (2019). Promising Potential of Lonchocarpus utilis against South American Myasis. Plants, 9(1), 33; http://dx.doi.org/10.3390/plants9010033

Lynn, O. M., Song, W. G., Shim, J. K., Kim, J. E., & Lee, K. Y. (2010). Effects of azadirachtin and neem-based formulations for the control of sweetpotato whitefly and root-knot nematode. Journal of the Korean Society for Applied Biological Chemistry, 53, 598-604; http://dx.doi.org/10.3839/jksabc.2010.092

Magaña-Ortíz, D., Coconi-Linares, N., Ortiz-Vazquez, E., Fernández, F., Loske, A. M., & Gómez-Lim, M. A. (2013). A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genetics and Biology, 56, 9-16; http://dx.doi.org/10.1016/j.fgb.2013.03.008

Magaña‐Ortiz, D., López‐Castillo, L. M., & Amezquita‐Novelo, R. (2024). White‐rot fungus Phlebia floridensis ITM 12: Laccase production, oxidoreductase profile, and hydrogen‐peroxide independent activity. Journal of Basic Microbiology, 64(1), 106-118; http://dx.doi.org/10.1002/jobm.202300462

Pérez-Verdugo, O. C., Ruiz-Sánchez, E., Gamboa-Angulo, M., Latournerie-Moreno, L., Fernández-Concha, G. C., Cua-Basulto, M., & Chan-Cupul, W. (2019). Actividad biológica de productos derivados de plantas en mosquita blanca (Bemisia tabaci) y su parasitoide Encarsia formosa [Activity of plant derived products in the whitefly (Bemisia tabaci) and its parasitoid Encarsia formosa]. Tropical and Subtropical Agroecosystems, 22, 575-583.

Reyes-Chilpa, R., Viveros-Rodriguez, N., Gomez-Garibay, F., & Alavez-Solano, D. (1995). Antitermitic activity of Lonchocarpus castilloi flavonoids and heartwood extracts. Journal of Chemical Ecology, 21, 455-463; https://doi.org/10.1007/bf02036742

Ruiz-Jiménez, A. L., Chan-May, Y. J., Ruiz-Sánchez, E., Moreno-Valenzuela, O. A., Minero-García, Y., Samaniego-Gámez, B. Y., Latournerie-Moreno, L. & Pierre, J. F. (2024). Epidemics of Begomoviruse s Transmitted by Bemisia tabaci in Habanero Peppers and the Efficacy of Botanical Insecticides. Agricultural Research, 1-7; http://dx.doi.org/10.1007/s40003-024-00714-w

Simmonds, M. S. J., Blaney, W. M., Delle Monache, F., & Marini Bettolo, G. B. (1990). Insect antifeedant activity associated with compounds isolated from species of Lonchocarpus and Tephrosia. Journal of Chemical Ecology, 16, 365-380; https://doi.org/10.1007/bf01021771

Tamura K. and Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526; https://doi.org/10.1093/oxfordjournals.molbev.a040023

Tamura K., Stecher G., and Kumar S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120.

Yang, N. W., Li, A. L., Wan, F. H., Liu, W. X., & Johnson, D. (2010). Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B. Crop protection, 29(10), 1200-1207; http://dx.doi.org/10.1016/j.cropro.2010.05.006

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.