Resumen
El cáncer es una de las principales causas de muerte en el mundo, por ello las investigaciones actuales se centran en evaluar los mecanismos implicados en el desarrollo de esta enfermedad. A lo largo de los años se ha demostrado que la respuesta inmune (tanto innata como adaptativa) juega un papel fundamental en la identificación y eliminación de células tumorales. Sin embargo, los tumores pueden evadir el reconocimiento inmunológico y seguir proliferando. En este artículo explicamos aspectos actuales sobre los mecanismos que utiliza el sistema inmune para eliminar las células tumorales, también hacemos una revisión de los mecanismos que utiliza el tumor para evadir la respuesta inmune.
Citas
Agata, Y., Kawasaki, A., Nishimura, H., Ishida, Y., Tsubata, T., Yagita, H., & Honjo, T. (1996). Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology, 8(5), 765-772. https://doi.org/10.1093/intimm/8.5.765
Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7(11), 834-846. https://doi.org/10.1038/nrc2256
Albert, M. L., Sauter, B., & Bhardwaj, N. (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 392(6671), 86-89. https://doi.org/10.1038/32183
Andersen, M. D., Kamper, P., Nielsen, P. S., Bendix, K., Riber-Hansen, R., Steiniche, T., Hamilton-Dutoit, S., Clausen, M., & d'Amore, F. (2016). Tumour-associated mast cells in classical Hodgkin's lymphoma: correlation with histological subtype, other tumour-infiltrating inflammatory cell subsets and outcome. European Journal Haematology, 96(3), 252-259. https://doi.org/10.1111/ejh.12583
Anderson, C. L., Shen, L., Eicher, D. M., Wewers, M. D., & Gill, J. K. (1990). Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. Journal of Experimental Medicine , 171(4), 1333-1345. https://doi.org/10.1084/jem.171.4.1333
Anderson, N. M., & Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30(16), R921-R925. https://doi.org/10.1016/j.cub.2020.06.081
Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., Korets, L., Lam, J., Tawfik, D., DeNardo, D. G., Naldini, L., de Visser, K. E., De Palma, M., & Coussens, L. M. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17(2), 121-134. https://doi.org/10.1016/j.ccr.2009.12.019
Anichini, A., Molla, A., Mortarini, R., Tragni, G., Bersani, I., Di Nicola, M., Gianni, A. M., Pilotti, S., Dunbar, R., Cerundolo, V., & Parmiani, G. (1999). An Expanded Peripheral T Cell Population to a Cytotoxic T Lymphocyte (Ctl)-Defined, Melanocyte-Specific Antigen in Metastatic Melanoma Patients Impacts on Generation of Peptide-Specific Ctls but Does Not Overcome Tumor Escape from Immune Surveillance in Metastatic Lesions. The Journal of Experimental Medicine, 190, 651- 668. https://doi.org/10.1084/jem.190.5.651
Barry, M., & Bleackley, R. C. (2002). Cytotoxic T lymphocytes: all roads lead to death. Nature Reviews Immunology, 2(6), 401-409. DOI: https://doi.org/10.1038/nri819
Beer, T. W., Ng, L. B., & Murray, K. (2008). Mast cells have prognostic value in Merkel cell carcinoma. The American Journal Dermatopathology, 30(1), 27-30. https://doi.org/10.1097/dad.0b013e31815c932a
Binnewies, M., Mujal, A. M., Pollack, J. L., Combes, A. J., Hardison, E. A., Barry, K. C., Tsui, J., Ruhland, M. K., Kersten, K., Abushawish, M. A., Spasic, M., Giurintano, J. P., Chan, V., Daud, A. I., Ha, P., Ye, C. J., Roberts, E. W., & Krummel, M. F. (2019). Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4(+) T Cell Immunity. Cell, 177(3), 556-571 e516. https://pubmed.ncbi.nlm.nih.gov/30955881/
Bluwstein, A., Kumar, N., Léger, K., Traenkle, J., Oostrum, J. V., Rehrauer, H., Baudis, M., & Hottiger, M. O. (2013). PKC signaling prevents irradiation-induced apoptosis of primary human fibroblasts. Cell Death & Disease, 4(2), e498-e498. https://doi.org/10.1038/cddis.2013.15
Boon, T., Gajewski, T. F., & Coulie, V. (1995). From defined human tumor antigens to effective immunization? Immunology Today, 16(7), 334-336. https://doi.org/10.1016/0167-5699(95)80149-9
Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R., & Shah, K. V. (1995). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. Journal of the National Cancer Institute, 87(11), 796-802. https://doi.org/10.1093/jnci/87.11.796
Bruhns, P. (2012). Properties of mouse and human IgG receptors and their contribution to disease models. Blood, 119(24), 5640-5649. https://doi.org/10.1182/blood-2012-01-380121
Bryceson, Y. T., March, M. E., Ljunggren, H.-G., & Long, E. O. (2006). Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood, 107(1), 159-166. https://doi.org/10.1182/blood-2005-04-1351
Burnet, F. M. (1970). The concept of immunological sucoglianorveillance. Progrès de la recherche expérimentale des tumeurs, 13, 1-27. https://doi.org/10.1159/000386035
Burnet, M. (1964). Immunological Factors in the Process of Carcinogenesis. British Medical Bulletin, 20, 154-158. https://doi.org/10.1093/oxfordjournals.bmb.a070310
Burstein, N. A., & Law, L. W. (1971). Neonatal thymectomy and non-viral mammary tumours in mice. Nature, 231(5303), 450-452. https://doi.org/10.1038/231450a0
Carus, A., Ladekarl, M., Hager, H., Nedergaard, B. S., & Donskov, F. (2013). Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer. British Journal of Cancer, 108(10), 2116-2122. https://doi.org/10.1038/bjc.2013.167
Chen, X., Chen, J., Zhang, W., Sun, R., Liu, T., Zheng, Y., & Wu, Y. (2017). Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget, 8(68), 112685-112696. https://doi.org/10.18632/oncotarget.22340
Chen, X., & Jensen, P. E. (2008). The role of B lymphocytes as antigen-presenting cells. Archivum Immunologiae et Therapiae Experimentalis, 56(2), 77-83. https://doi.org/10.1007/s00005-008-0014-5
Cherrier, D. E., Serafini, N., & Di Santo, J. P. (2018). Innate Lymphoid Cell Development: A T Cell Perspective. Immunity, 48(6), 1091-1103. https://doi.org/10.1016/j.immuni.2018.05.010
Clemente, C. G, Mihm Jr, M. C., F. A. C. P, Bufalino, R., Zurrida, S., Collini, P., & Cascinelli, N. (1996). Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer, 77(7), 1303-1310. https://doi.org/10.1002/(sici)1097-0142(19960401)77:7%3C1303::aid-cncr12%3E3.0.co;2-5
Cogliano, V. J., Baan, R., Straif, K., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., & Wild, C. P. (2011). Preventable exposures associated with human cancers. Journal of the National Cancer Institute, 103(24), 1827-1839. https://doi.org/10.1093/jnci/djr483
Dabiri, S., Huntsman, D., Makretsov, N., Cheang, M., Gilks, B., Bajdik, C., Gelmon, K., Chia, S., & Hayes, M. (2004). The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Modern Pathology, 17(6), 690-695. https://doi.org/10.1038/modpathol.3800094
de Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374-403. https://doi.org/10.1016/j.ccell.2023.02.016
Del Prete, A., Salvi, V., Soriani, A., Laffranchi, M., Sozio, F., Bosisio, D., & Sozzani, S. (2023). Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cellular & Molecular Immunology, 20(5), 432-447. https://doi.org/10.1038/s41423-023-00990-6
Deng, W., Gowen, B. G., Zhang, L., Wang, L., Lau, S., Iannello, A., Xu, J., Rovis, T. L., Xiong, N., & Raulet, D. H. (2015). Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science, 348(6230), 136-139. https://doi.org/10.1126/science.1258867
Dhatchinamoorthy, K., Colbert, J. D., & Rock, K. L. (2021). Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.636568
Diefenbach, A., & Raulet, D. H. (1999). Natural killer cells: stress out, turn on, tune in. Current Biology, 9(22), R851-853. https://doi.org/10.1016/s0960-9822(00)80044-5
Dighe, A. S., Richards, E., Old, L. J., & Schreiber, R. D. (1994). Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity, 1(6), 447-456. https://doi.org/10.1016/1074-7613(94)90087-6
DiLillo, D. J., Yanaba, K., & Tedder, T. F. (2010). B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. The Journal of Immunology, 184(7), 4006-4016. https://doi.org/10.4049/jimmunol.0903009
Dixon, K. J., Wu, J., & Walcheck, B. (2021). Engineering Anti-Tumor Monoclonal Antibodies and Fc Receptors to Enhance ADCC by Human NK Cells. Cancers (Basel), 13(2). https://doi.org/10.3390/cancers13020312
Duan, Z., & Luo, Y. (2021). Targeting macrophages in cancer immunotherapy. Signal Transduction and Targeted Therapy, 6(1), 127. https://doi.org/10.1038/s41392-021-00506-6
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002a). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991-998. https://doi.org/10.1038/ni1102-991
Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004b). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137-148. https://doi.org/10.1016/j.immuni.2004.07.017
Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004c). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329-360. https://doi.org/10.1146/annurev.immunol.22.012703.104803
Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650-1659. https://doi.org/10.1056/nejm198612253152606
Fearon, E. R. (1997). Human cancer syndromes: clues to the origin and nature of cancer. Science, 278(5340), 1043-1050. https://doi.org/10.1126/science.278.5340.1043
Feng, M., Chen, J. Y., Weissman-Tsukamoto, R., Volkmer, J. P., Ho, P. Y., McKenna, K. M., Cheshier, S., Zhang, M., Guo, N., Gip, P., Mitra, S. S., & Weissman, I. L. (2015). Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proceedings of the National Academy of Sciences of the United States of America, 112(7), 2145-2150. https://doi.org/10.1073/pnas.1424907112
Feng, M., Jiang, W., Kim, B. Y. S., Zhang, C. C., Fu, Y.-X., & Weissman, I. L. (2019). Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 19(10), 568-586. https://doi.org/10.1038/s41568-019-0183-z
Fischer, J. R., Stehr, S., Lahm, H., Falk, W., Drings, P., & Krammer, P. H. (1992). Different Cytokines with Autocrine and Immunosuppressive Activities are Secreted by a Small-Cell Lung Cancer Cell Line. Cytokines in Hemopoiesis, Oncology, and AIDS II, Berlin, Heidelberg, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-48715-6_15
Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G. S., & Albelda, S. M. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 16(3), 183-194. https://doi.org/10.1016/j.ccr.2009.06.017
Furumaya, C., Martinez-Sanz, P., Bouti, P., Kuijpers, T. W., & Matlung, H. L. (2020). Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Frontiers in Immunology, 11, 2100. https://doi.org/10.3389/fimmu.2020.02100
Galluzzi, L., Vitale, I., Warren, S., Adjemian, S., Agostinis, P., Martinez, A. B., Chan, T. A., Coukos, G., Demaria, S., Deutsch, E., Draganov, D., Edelson, R. L., Formenti, S. C., Fucikova, J., Gabriele, L., Gaipl, U. S., Gameiro, S. R., Garg, A. D., Golden, E.,…Marincola, F. M. (2020). Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. The Journal for ImmunoTherapy of Cancer, 8(1). Consensus guidelines for the definition, detection and interpretation of immunogenic cell death - PubMed (nih.gov)
Gao, J., Liang, Y., & Wang, L. (2022). Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Frontiers in Immunology, 13, 888713. https://doi.org/10.3389/fimmu.2022.888713
Garutti, M., Foffano, L., Mazzeo, R., Michelotti, A., Da Ros, L., Viel, A., Miolo, G., Zambelli, A., & Puglisi, F. (2023). Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes (Basel), 14(5). https://doi.org/10.3390/genes14051025
Girardi, M., Oppenheim, D. E., Steele, C. R., Lewis, J. M., Glusac, E., Filler, R., Hobby, P., Sutton, B., Tigelaar, R. E., & Hayday, A. C. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science, 294(5542), 605-609. https://doi.org/10.1126/science.1063916
Gong, T., Liu, L., Jiang, W., & Zhou, R. (2020). DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nature Reviews Immunology, 20(2), 95-112. https://doi.org/10.1038/s41577-019-0215-7
Gonzalez-Aparicio, M., & Alfaro, C. (2020). Significance of the IL-8 pathway for immunotherapy. Human Vaccines & Immunotherapeutics, 16(10), 2312-2317. https://doi.org/10.1080/21645515.2019.1696075
Gross, C., Holler, E., Stangl, S., Dickinson, A., Pockley, A. G., Asea, A. A., Mallappa, N., & Multhoff, G. (2008). An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation. Leukemia Research, 32(4), 527-534. https://doi.org/10.1016/j.leukres.2007.03.027
Gunderson, A. J., & Coussens, L. M. (2013). B cells and their mediators as targets for therapy in solid tumors. Experimental Cell Research, 319(11), 1644-1649. https://doi.org/10.1016/j.yexcr.2013.03.005
Hamdan, F., & Cerullo, V. (2023). Cancer immunotherapies: A hope for the uncurable? Frontiers in Molecular Medicine, 3. https://doi.org/10.3389/fmmed.2023.1140977
Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31-46. https://doi.org/10.1158/2159-8290.cd-21-1059
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70. https://doi.org/10.1016/s0092-8674(00)81683-9
Hellström, I., Hellstrom, K. E., Pierce, G. E., & Yang, J. P. (1968). Cellular and humoral immunity to different types of human neoplasms. Nature, 220(5174), 1352-1354. https://doi.org/10.1038/2201352a0
Herberman, R. B., & Holden, H. T. (1978). Natural cell-mediated immunity. Advances in Cancer Research, 27, 305-377. https://doi.org/10.1016/s0065-230x(08)60936-7
Ho, W. W., Pittet, M. J., Fukumura, D., & Jain, R. K. (2022). The local microenvironment matters in preclinical basic and translational studies of cancer immunology and immunotherapy. Cancer Cell, 40(7), 701-702. https://doi.org/10.1016/j.ccell.2022.05.016
Jablonska, J., Lang, S., Sionov, R. V., & Granot, Z. (2017). The regulation of pre-metastatic niche formation by neutrophils. Oncotarget, 8(67), 112132-112144. https://doi.org/10.18632/oncotarget.22792
Jahn, A., Rump, A., Widmann, T. J., Heining, C., Horak, P., Hutter, B., Paramasivam, N., Uhrig, S., Gieldon, L., Drukewitz, S., Kubler, A., Bermudez, M., Hackmann, K., Porrmann, J., Wagner, J., Arlt, M., Franke, M., Fischer, J., Kowalzyk, Z.,…Klink, B. (2022). Comprehensive cancer predisposition testing within the prospective MASTER trial identifies hereditary cancer patients and supports treatment decisions for rare cancers. Annals of Oncology, 33(11), 1186-1199. https://doi.org/10.1016/j.annonc.2022.07.008
Janjic, B. M., Kulkarni, A., Ferris, R. L., Vujanovic, L., & Vujanovic, N. L. (2022). Human B Cells Mediate Innate Anti-Cancer Cytotoxicity Through Concurrent Engagement of Multiple TNF Superfamily Ligands. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.837842
Jungbluth, A. A., Chen, Y.-T., Stockert, E., Busam, K. J., Kolb, D., Iversen, K., Coplan, K., Williamson, B., Altorki, N., & Old, L. J. (2001). Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. International Journal of Cancer, 92(6), 856-860. https://doi.org/10.1002/ijc.1282v
Kaplan, D. H., Shankaran, V., Dighe, A. S., Stockert, E., Aguet, M., Old, L.J., & Schreiber, R. D. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7556-7561. https://doi.org/10.1073/pnas.95.13.7556
Karre, K. (1997). How to recognize a foreign submarine. Immunological Reviews, 155, 5-9. https://doi.org/10.1111/j.1600-065x.1997.tb00935.x
Knuth, A., Danowski, B., Oettgen, H. F., & Old, L. J. (1984). T-cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T-cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 81(11), 3511-3515. https://doi.org/10.1073/pnas.81.11.3511
Koh, C. H., Lee, S., Kwak, M., Kim, B. S., & Chung, Y. (2023). CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Experimental & Molecular Medicine, 55(11), 2287-2299. https://doi.org/10.1038/s12276-023-01105-x
Kolev, M., Das, M., Gerber, M., Baver, S., Deschatelets, P., & Markiewski, M. M. (2022). Inside-Out of Complement in Cancer. Frontiers in Immunology, 13, 931273. https://doi.org/10.3389/fimmu.2022.931273
Korman, A. J., Peggs, K. S., & Allison, J. P. (2006). Checkpoint blockade in cancer immunotherapy. Advances in Immunology, 90, 297-339. https://doi.org/10.1016/s0065-2776(06)90008-x
Kusakabe, M., Taguchi, A., Sone, K., Mori, M., & Osuga, Y. (2023). Carcinogenesis and management of human papillomavirus-associated cervical cancer. International Journal Clinical Oncolology, 28(8), 965-974. https://doi.org/10.1007/s10147-023-02337-7
Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging Biological Principles of Metastasis. Cell, 168(4), 670-691. https://doi.org/10.1016/j.cell.2016.11.037
Lanier, L. L. (2008). Up on the tightrope: natural killer cell activation and inhibition. Nature Immunology, 9(5), 495-502. https://doi.org/10.1038/ni1581
Lazar-Molnar, E., Hegyesi, H., Toth, S., & Falus, A. (2000). Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine, 12(6), 547-554. https://doi.org/10.1006/cyto.1999.0614
LeBien, T. W., & Tedder, T. F. (2008). B lymphocytes: how they develop and function. Blood, 112(5), 1570-1580. https://doi.org/10.1182/blood-2008-02-078071
Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, E., Skytthe, A., & Hemminki, K. (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N The New England Journal of Medicine, 343(2), 78-85. https://doi.org/10.1056/nejm200007133430201
Liu, E., Marin, D., Banerjee, P., Macapinlac, H. A., Thompson, P., Basar, R., Kerbauy, L. N., Overman, B., Thall, P., Kaplan, M., Nandivada, V., Kaur, I., Nunez Cortes, A., Cao, K., Daher, M., Hosing, C., Cohen, E. N., Kebriaei, P., Mehta, R.,…Rezvani, K. (2020). "Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors." The New England Journal of Medicine, 382(6), 545-553. https://doi.org/10.1056/nejmoa1910607
Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J., & Zhang, Z. (2021). PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.731798
Liu, S., Matsuzaki, J., Wei, L., Tsuji, T., Battaglia, S., Hu, Q., Cortes, E., Wong, L., Yan, L., Long, M., Miliotto, A., Bateman, N. W., Lele, S. B., Chodon, T., Koya, R. C., Yao, S., Zhu, Q., Conrads, T. P., Wang, J.,…Odunsi, K. (2019). Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian cancer. The Journal for ImmunoTherapy of Cancer, 7(1), 156. https://doi.org/10.1186/s40425-019-0629-6
Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A., & Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology, 229(2), 176-185. https://doi.org/10.1002/path.4133
Matzinger, P. (1994). Tolerance, Danger, and the Extended Family. Annual Review of Immunology, 12(1), 991-1045. https://doi.org/10.1146/annurev.iy.12.040194.005015
Mauri, C., & Bosma, A. (2012). Immune regulatory function of B cells. Annual Review of Immunology, 30, 221-241. https://doi.org/10.1146/annurev-immunol-020711-074934
Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., Rossi, F. W., Basolo, F., Ugolini, C., de Paulis, A., Santoro, M., & Marone, G. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29(47), 6203-6215. https://doi.org/10.1038/onc.2010.348
Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology, 164(12), 6166-6173. https://doi.org/10.4049/jimmunol.164.12.6166
Mills, C. D., & Ley, K. (2014). M1 and M2 macrophages: the chicken and the egg of immunity. Journal of Innate Immunity, 6(6), 716-726. https://doi.org/10.1159/000364945
Neale, R. E., Lucas, R. M., Byrne, S. N., Hollestein, L., Rhodes, L. E., Yazar, S., Young, A. R., Berwick, M., Ireland, R. A., & Olsen, C. M. (2023). The effects of exposure to solar radiation on human health. Photochemical & Photobiological Sciences, 22(5), 1011-1047. https://doi.org/10.1007/s43630-023-00375-8
Nersesian, S., Carter, E. B., Lee, S. N., Westhaver, L. P., & Boudreau, J. E. (2023). Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Frontiers in Immunology, 14, 1269614. https://doi.org/10.3389/fimmu.2023.1269614
Nishizuka, Y., Nakakuki, K., & Usui, M. (1965). Enhancing Effect of Thymectomy on Hepatotumorigenesis in Swiss Mice following Neonatal Injection of 20-Methylcholanthrene. Nature, 205(4977), 1236-1238. https://doi.org/10.1038/2051236b0
Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P. J., Kuppner, M. C., Roos, M., Kremmer, E., Asea, A., Calderwood, S. K., & Issels, R. D. (2002). Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. Journal of Immunology, 169(10), 5424-5432. https://doi.org/10.4049/jimmunol.169.10.5424
Nussenzweig, M. C., Steinman, R. M., Gutchinov, B., & Cohn, Z. A. (1980). Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. Journal of Experimental Medicine, 152(4), 1070-1084. https://doi.org/10.1084/jem.152.4.1070
Paijens, S. T., Vledder, A., de Bruyn, M., & Nijman, H. W. (2021). Tumor-infiltrating lymphocytes in the immunotherapy era. Cellular & Molecular Immunology, 18(4), 842-859. https://doi.org/10.1038/s41423-020-00565-9
Plesca, I., Muller, L., Bottcher, J. P., Medyouf, H., Wehner, R., & Schmitz, M. (2022). Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. European Journal of Immunology, 52(11), 1750-1758. https://doi.org/10.1002/eji.202149487
Quezada, S. A., Simpson, T. R., Peggs, K. S., Merghoub, T., Vider, J., Fan, X., Blasberg, R., Yagita, H., Muranski, P., Antony, P. A., Restifo, N. P., & Allison, J. P. (2010). Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. Journal of Experimental Medicine, 207(3), 637-650. https://doi.org/10.1084/jem.20091918
Rabenhorst, A., Schlaak, M., Heukamp, L. C., Forster, A., Theurich, S., von Bergwelt-Baildon, M., Buttner, R., Kurschat, P., Mauch, C., Roers, A., & Hartmann, K. (2012). Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood, 120(10), 2042-2054. https://doi.org/10.1182/blood-2012-03-415638
Rakaee, M., Busund, L. T., Paulsen, E. E., Richardsen, E., Al-Saad, S., Andersen, S., Donnem, T., Bremnes, R. M., & Kilvaer, T. K. (2016). Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget, 7(44), 72184-72196. https://doi.org/10.18632/oncotarget.12360
Rao, H. L., Chen, J. W., Li, M., Xiao, Y. B., Fu, J., Zeng, Y. X., Cai, M. Y., & Xie, D. (2012). Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients' adverse prognosis. PLoS One, 7(1), e30806. https://doi.org/10.1371/journal.pone.0030806
Rao, Q., Chen, Y., Yeh, C. R., Ding, J., Li, L., Chang, C., & Yeh, S. (2016). Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERbeta/CCL2/CCR2 EMT/MMP9 signals. Oncotarget, 7(7), 7842-7855. https://doi.org/10.18632/oncotarget.5467
Ravetch, J. V., & Bolland, S. (2001). IgG Fc Receptors. Annual Review of Immunology, 19(1), 275-290. https://doi.org/10.1146/annurev.immunol.19.1.275
Reizis, B. (2019). Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity, 50(1), 37-50. https://doi.org/10.1016/j.immuni.2018.12.027
Robbins, P. F., Lu, Y.-C., El-Gamil, M., Li, Y. F., Gross, C., Gartner, J., Lin, J. C., Teer, J. K., Cliften, P., Tycksen, E., Samuels, Y., & Rosenberg, S. A. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747-752. https://doi.org/10.1038/nm.3161
Sagiv, J. Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R. V., Ariel, A., Hovav, A. H., Henke, E., Fridlender, Z. G., & Granot, Z. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports, 10(4), 562-573. https://doi.org/10.1016/j.celrep.2014.12.039
Sahin, U., Türeci, O., Schmitt, H., Cochlovius, B., Johannes, T., Schmits, R., Stenner, F., Luo, G., Schobert, I., & Pfreundschuh, M. (1995). Human neoplasms elicit multiple specific immune responses in the autologous host. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11810-11813. https://doi.org/10.1073/pnas.92.25.11810
Sanford, B. H., Kohn, H. I., Daly, J. J., & Soo, S. F. (1973). Long-term spontaneous tumor incidence in neonatally thymectomized mice. Journal of Immunology, 110(5), 1437-1439. https://doi.org/10.4049/jimmunol.110.5.1437
Satie, A. P., Rajpert-De Meyts, E., Spagnoli, G. C., Henno, S., Olivo, L., Jacobsen, G. K., Rioux-Leclercq, N., Jegou, B., & Samson, M. (2002). The cancer-testis gene, NY-ESO-1, is expressed in normal fetal and adult testes and in spermatocytic seminomas and testicular carcinoma in situ. Laboratory Investigation, 82(6), 775-780. https://doi.org/10.1097/01.lab.0000017169.26718.5f
Schlosser, H. A., Thelen, M., Lechner, A., Wennhold, K., Garcia-Marquez, M. A., Rothschild, S. I., Staib, E., Zander, T., Beutner, D., Gathof, B., Gilles, R., Cukuroglu, E., Goke, J., Shimabukuro-Vornhagen, A., Drebber, U., Quaas, A., Bruns, C. J., Holscher, A. H., & Von Bergwelt-Baildon, M. S. (2019). B cells in esophago-gastric adenocarcinoma are highly differentiated, organize in tertiary lymphoid structures and produce tumor-specific antibodies. Oncoimmunology, 8(1), e1512458. https://doi.org/10.1080/2162402x.2018.1512458
Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 331(6024), 1565-1570. https://doi.org/10.1126/science.1203486
See, P., Dutertre, C. A., Chen, J., Gunther, P., McGovern, N., Irac, S. E., Gunawan, M., Beyer, M., Handler, K., Duan, K., Sumatoh, H. R. B., Ruffin, N., Jouve, M., Gea-Mallorqui, Hennekam, E., R. C. M., Lim, T., Yip, C. C., Wen, M., Malleret, B.,…Ginhoux, F. (2017). Mapping the human DC lineage through the integration of high-dimensional techniques. Science, 356(6342). https://doi.org/10.1126/science.aag3009
Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J., & Schreiber, R. D. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410(6832), 1107-1111. https://doi.org/10.1038/35074122
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425-6440. https://doi.org/10.1002/jcp.26429
Shaul, M. E., & Fridlender, Z. G. (2019). Tumour-associated neutrophils in patients with cancer. Nature Reviews Clinical Oncology, 16(10), 601-620. https://doi.org/10.1038/s41571-019-0222-4
Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., & Liu, Y. J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science, 284(5421), 1835-1837. https://doi.org/10.1126/science.284.5421.1835
Smith, C. C., Selitsky, S. R., Chai, S., Armistead, P. M., Vincent, B. G., & Serody, J. S. (2019). Alternative tumour-specific antigens. Nature Reviews Cancer, 19(8), 465-478. https://doi.org/10.1038/s41568-019-0162-4
Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006a). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Advances in Immunology, 90, 1-50. https://doi.org/10.1016/s0065-2776(06)90001-7
Smyth, M. J., Thia, K. Y., Street, S. E., Cretney, E., Trapani, J. A., Taniguchi, M., Kawano, T., Pelikan, S. B., Crowe, N. Y., & Godfrey, D. I. (2000b). Differential tumor surveillance by natural killer (NK) and NKT cells. Journal of Experimental Medicine, 191(4), 661-668. https://doi.org/10.1084/jem.191.4.661
Smyth, M. J., Thia, K. Y., Street, S. E., MacGregor, D., Godfrey, D. I., & Trapani, J. A. (2000c). Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. Journal of Experimental Medicine, 192(5), 755-760. https://doi.org/10.1084/jem.191.4.661
Sondel, P. M., & Hank, J. A. (2001). Antibody-directed, effector cell-mediated tumor destruction. Hematoly/Oncology Clinics of North America, 15(4), 703-721. https://doi.org/10.1016/s0889-8588(05)70243-4
Steinman, R. M. (2012). Decisions about dendritic cells: past, present, and future. Annual Reviews Immunology, 30, 1-22. https://doi.org/10.1146/annurev-immunol-100311-102839
Street, S. E., Trapani, J. A., MacGregor, D., & Smyth, M. J. (2002). Suppression of lymphoma and epithelial malignancies effected by interferon gamma. Journal of Experimental Medicine, 196(1), 129-134. https://doi.org/10.1084/jem.20020063
Stutman, O. (1975). Immunodepression and malignancy. Advances in Cancer Research, 22, 261-422. https://doi.org/10.1016/s0065-230x(08)60179-7
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660
Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J., & Eisen, H. N. (1996). Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity, 4(6), 565-571. https://doi.org/10.1016/s1074-7613(00)80483-5
Tan, R., Nie, M., & Long, W. (2022). The role of B cells in cancer development. Frontiers in Oncology, 12, 958756. https://doi.org/10.3389/fonc.2022.958756
Thomas, R., Al-Khadairi, G., Roelands, J., Hendrickx, W., Dermime, S., Bedognetti, D., & Decock, J. (2018). NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Frontiers in Immunology, 9, 947. https://doi.org/10.3389/fimmu.2018.00947
Titus, J. A., Perez, P., Kaubisch, A., Garrido, M. A., & Segal, D. M. (1987). Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. Journal in Immunology, 139(9), 3153-3158. https://doi.org/10.4049/jimmunol.139.9.3153
Togashi, Y., Shitara, K., & Nishikawa, H. (2019). Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nature Reviews Clinical Oncology, 16(6), 356-371. https://doi.org/10.1038/s41571-019-0175-7
Tomasetti, C., & Vogelstein, B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347(6217), 78-81. https://doi.org/10.1126/science.1260825
Vallabhapurapu, S. D., Blanco, V. M., Sulaiman, M. K., Vallabhapurapu, S. L., Chu, Z., Franco, R. S., & Qi, X. (2015). Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget, 6(33), 34375-34388. https://doi.org/10.18632/oncotarget.6045
van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., & Boon, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254(5038), 1643-1647. http://doi: 10.1126/science.1840703.
van Leeuwen, E. M., Remmerswaal, E. B., Vossen, M. T., Rowshani, A. T., Wertheim-van Dillen, P. M., van Lier, R. A., & ten Berge, I. J. (2004). Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. Journal in Immunology, 173(3), 1834-1841. https://doi.org/10.4049/jimmunol.173.3.1834
Varricchi, G., Galdiero, M. R., Loffredo, S., Marone, G., Iannone, R., Marone, G., & Granata, F. (2017). Are Mast Cells MASTers in Cancer? Frontiers in Immunology, 8, 424. https://doi.org/10.3389/fimmu.2017.00424
Vesely, M. D., Kershaw, M. H., Schreiber, R. D., & Smyth, M. J. (2011). Natural innate and adaptive immunity to cancer. Annual Reviews of Immunology, 29, 235-271. https://doi.org/10.1146/annurev-immunol-031210-101324
West, W. H., Cannon, G. B., Kay, H. D., Bonnard, G. D., & Herberman, R. B. (1977). Natural Cytotoxic Reactivity of Human Lymphocytes Against a Myeloid Cell Line: Characterization of Effector Cells. The Journal of Immunology, 118(1), 355-361. https://doi.org/10.4049/jimmunol.118.1.355
Wherry, E. J. (2011). T cell exhaustion. Nature Immunology, 12(6), 492-499. https://doi.org/10.1038/ni.2035
White, E., Kirkpatrick, C. S., & Lee, J. A. (1994). Case-control study of malignant melanoma in Washington State. I. Constitutional factors and sun exposure. American Journal of Epidemiology, 139(9), 857-868. https://doi.org/10.1093/oxfordjournals.aje.a117092
Woloszynska-Read, A., Mhawech-Fauceglia, P., Yu, J., Odunsi, K., & Karpf, A. R. (2008). Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clinical Cancer Research, 14(11), 3283-3290. https://doi.org/10.1158/1078-0432.ccr-07-5279
Wu, S., Powers, S., Zhu, W., & Hannun, Y. A. (2016). Substantial contribution of extrinsic risk factors to cancer development. Nature, 529(7584), 43-47. https://doi.org/10.1038/nature16166
Wu, S., Zhu, W., Thompson, P., & Hannun, Y. A. (2018). Evaluating intrinsic and non-intrinsic cancer risk factors. Nature Communications, 9(1), 3490. https://doi.org/10.1038/s41467-018-05467-z
Xing, S., & Ferrari de Andrade, L. (2020). NKG2D and MICA/B shedding: a ‘tag game’ between NK cells and malignant cells. Clinical & Translational Immunology, 9(12), e1230. https://doi.org/10.1002/cti2.1230
Yamamoto, T. N., Kishton, R. J., & Restifo, N. P. (2019). Developing neoantigen-targeted T cell-based treatments for solid tumors. Nature Medicine, 25(10), 1488-1499. https://doi.org/10.1038/s41591-019-0596-y
Yano, H., Kinuta, M., Tateishi, H., Nakano, Y., Matsui, S., Monden, T., Okamura, J., Sakai, M., & Okamoto, S. (1999). Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer, 2(1), 26-32. https://doi.org/10.1038/sj.bjc.6603962
Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A., & Jaffee, E. M. (2017). Targeting neoantigens to augment antitumour immunity. Nature Reviews Cancer, 17(4), 209-222. https://doi.org/10.1038/nrc.2017.74
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional