Resumen
En Nayarit México, el camarón Litopenaeus vannamei (Boone, 1931) es una de las especies ampliamente utilizadas para el cultivo, por tolerar un intervalo amplio de salinidad, probablemente debido a que el período de lluvias provoca que la salinidad disminuya de 35 a 5 unidades prácticas de salinidad (ups). El presente trabajo evaluó la respuesta de camarones al proceso de aclimatación con la disminución de la salinidad (10 ups, 7 ups, 5 ups y 2 ups), así como también con el incremento gradual (2 ups, 5 ups, 7 ups y 10 ups). Las variables determinadas fueron; la coagulación de la hemolinfa, la concentración de hemocianina, conteo total y diferencial de hemocitos en camarones juveniles. La coagulación en los camarones no fue alterada en ambos experimentos. La hemocianina incrementó significativamente (P <0.05) al disminuir la salinidad, los hemocitos tendieron a disminuir conforme se disminuyó la salinidad, mientras que al aumentar las ups, la tendencia fue la de aumentar. Los hemocitos hialinos presentaron un mayor porcentaje cuando se incrementó la salinidad, mostrando diferencias significativas (P <0.05) en los camarones de ambos experimentos. Finalmente, el proceso de aclimatación no afectó la supervivencia, y las diferencias entre las variables determinadas podrían estar relacionadas con la disminución de la salinidad.
Citas
Arredondo-Vega, B. O., & Voltolina, D. (2007). Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Ed. Centro de Investigaciones Biológicas de Noroeste, S.C.
Bautista-Covarrubias, J. C., Frías-Espericueta, M. G., Velarde-Montes, G. J., Voltolina, D., García-de la Parra, L. M., & Soto-Jiménez, M. F. (2015). Relationships between copper and stress indicators in the Pacific white shrimp, Litopenaeus vannamei. Marine and Freshwater Behaviour and Physiology, 48, 193-203. https://doi.org/10.1080/10236244.2015.1024079
Boone, W. R. & Schoffeniels, E. (1979). Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas (L.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 63(2),207-214. https://doi.org/10.1016/0305-0491(79)90031-2
Boyd, C. E. & Thunjai, T. (2003). Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States. Journal of the World Aquaculture Society, 34(4), 524-532. https://doi.org/10.1111/j.1749-7345.2003.tb00092.x
Brito, R., Chimal, M. E. & Rosas, C. (2000). Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (decapoda: Penaeidae). Journal of Experimental Marine Biology and Ecology, 244(2), 253-263. https://doi.org/10.1016/S0022-0981(99)00142-2
Cheng, W. & Chen, J. C. (2000). Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology, 10, 387-391. https://doi.org/10.1006/fsim.2000.0264
Correia, A. A. (2008). Histofisiología do canal alimentar e hemócitos de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) tratadas com Nim (Azadirachta indica A.Juss). [Tesis de Maestría, Universidade Federal Rural de Pernambuco, Brasil]. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5948
Cossio-Vargas, L. E., Salazar-García, S. & Medina-Torres, R. (2008). Desarrollo floral de los aguacates “choquette” y “booth-8” en clima cálido: Parte I. Agricultura técnica en México, 34(1), 43-49.
Costa, A. M., Buglione, C. C., Bezerra, F. L., Martins, P. C. C. & Barracco, M. A. (2009). Immune assessment of farm-reared Penaeus vannamei shrimp naturally infected by IMNV in NE Brazil. Aquaculture, 291(3-4), 141-146. https://doi.org/10.1016/j.aquaculture.2009.03.013
Davis, D., McGraw, W. J., & Rouse, B. (2002). Considerations for Litopenaeus vannamei reared in inland low salinity waters.https://www.semanticscholar.org/paper/Considerations-for-Litopenaeus-vannamei-Reared-in-Davis-McGraw/eaf41ca35226a8569143b9f90ec664c23ffcc9b0
Destoumieux-Garzón, Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P. & Bachère, E. (2001). Crustacean Immunity: Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry, 276(50), 47070-47077. https://doi.org/10.1074/jbc.M103817200
El-Gendy, K. S., Radwana, M. A., Gad, A. F., Khamis, A. E., & Eshra, E. H. (2019). Use of multiple endpoints to investigate the ecotoxicological effects of abamectin and thiamethoxam on Theba pisana snails. Ecotoxicology and Environmental Safety, 167, 242-249. https://doi.org/10.1016/j.ecoenv.2018.10.027
Estrada, N., Velázquez, E., Rodríguez-Jaramillo, C. & Ascencio, F. (2016). Carbohydrate moieties and cytoenzymatic characterization of hemocytes in whiteleg shrimp Litopenaeus vannamei. International Journal of Cell Biology, Article 9032181. https://doi.org/10.1155/2016/9032181
Flaherty, M., Szuster, B. & Miller, P. (2000). Low salinity inland shrimp farming in Thailand. AMBIO: A Journal of the Human Environment, 29(3), 174-179. https://doi.org/10.1579/0044-7447-29.3.174
Fotedar, S., Tsvetnenko, E., & Evans, L. (2001). Effect of air exposure on the immune system of the rock lobster Panulirus cygnus. Marine and Freshwater Research, 52(8), 1351-1355. https://doi.org/10.1071/mf01098
Giulianini, P. G., Bierti, M., Lorenzon, S., Battistella, S., & Ferrero, E. A. (2007). Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: Cell types and their role after in vivo artificial non-self challenge. Micron, 38(1), 49-57. https://doi.org/10.1016/j.micron.2006.03.019 .
Godínez-Siordia, D. E., Chávez-Sánchez, M. C., & Gómez-Jiménez, S. (2011). Acuicultura epicontinental del camarón blanco del Pacífico, Litopenaeus vannamei (Boone, 1931). Tropical and Subtropical Agroecosystems, 14,(1) 55-62.
Hose, J. E., Martín, G. G., Tiu, S. & McKrell, N. (1992). Patterns of hemocyte production and release throughout the molt cycle in the Penaeid Shrimp Sicyonia ingentis. The Biological Bulletin, 183(), 185-199. https://doi.org/10.2307/1542206
Huang, J., Yang, Y., & Wang, A. (2010). Reconsideration of phenoloxidase activity determination in white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 28(1), 240-244. https://doi.org/10.1016/j.fsi.2009.10.010
Iwanaga, S., & Lee, B. L. (2005). Recent advances in the innate immunity of invertebrate animals. Journal of Biochemistry and Molecular Biology, 38(2), 128-150. https://doi.org/10.5483/bmbrep.2005.38.2.128
Jayasankar, V., Jasmani, S., Nomura, T., Nohara, S., Huong, D. T. T., & Wilder, M. N. (2009). Low salinity rearing of the Pacific white Shrimp Litopenaeus vannamei: Acclimation, survival and growth of postlarvae and juveniles. Japan Agricultural Research Quarterly: JARQ, 43(4), 345-350. https://doi.org/10.6090/jarq.43.345
Johansson, M. W., Keyser, P., Sritunyalucksana, K. & Söderhäll, K. (2000). Crustacean haemocytes and haematopoiesis. Aquaculture, 191(1-3), 45-52. https://doi.org/10.1016/S0044-8486(00)00418-X
Joseph, A. & Philip, R. (2020). Immunocompetence of Penaeus monodon under acute salinity stress and pathogenicity of Vibrio harveyi with respect to ambient salinity. Fish & Shellfish Immunology, 106, 555-562. https://doi.org/10.1016/j.fsi.2020.07.067
Jussila, J., McBride, S., Jago, J. & Evans, L. H. (2001). Hemolymph clotting time as an indicator of stress in western rock lobster (Panulirus cygnus George). Aquaculture, 199(1-2), 185-193. https://doi.org/10.1016/S0044-8486(00)00599-8
Kaoud, H. A., & Rezk, A. (2011). Effect of exposure to cadmium on the tropical freshwater prawn Macrobrachium rosenbergii. African Journal of Aquatic Science, 36(3), 253-260. https://doi.org/10.2989/16085914.2011.636899
Landsman, A., St-Pierre, B., Rosales-Leija, M., Brown, M. & Gibbons, W. (2019). Impact of aquaculture practices on intestinal bacterial profiles of Pacific whiteleg shrimp Litopenaeus vannamei. Microorganisms, 7(4), E93. https://doi.org/10.3390/microorganisms7040093
Lei, K., Li, F., Zhang, M., Yang, H., Luo, T., & Xu, X. (2008). Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Developmental & Comparative Immunology, 32(7), 808-813. https://doi.org/10.1016/j.dci.2007.11.010
Li, Z. S., Ma, S., Shan, H. W., Wang, T., & Xiao, W. (2019). Responses of hemocyanin and energy metabolism to acute nitrite stress in juveniles of the shrimp Litopenaeus vannamei. Ecotoxicology and Environmental Safety, 186, 109753. https://doi.org/10.1016/j.ecoenv.2019.109753
Lightner, D. V., & Redman, R. M. (1998). Shrimp diseases and current diagnostic methods. Aquaculture, 164(1-4), 201-220. https://doi.org/10.1016/S0044-8486(98)00187-2
Liu, C. H., Yeh, S. T., Cheng, S. Y. & Chen, J. C. (2004). The immune response of the white shrimp Litopenaeus vannamei and its susceptibility to Vibrio infection in relation with the moult cycle. Fish & Shellfish Immunology, 16(2), 151-161. https://doi.org/10.1016/S1050-4648(03)00058-5
Lorenzon, S., Francese, M., Smith, V. J. & Ferrero, E. A. (2001). Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish & Shellfish Immunology, 11(6), 459-472. https://doi.org/10.1006/fsim.2000.0321
Lu-Qing, P., Ling-Xu, J., & Jing-Jing, M. (2005). Effects of salinity and ph on immune parameters of the white shrimp Litopenaeus vannamei. Journal of Shellfish Research, 24(4), 1223-1227. https://doi.org/10.2983/0730-8000(2005)24[1223:EOSAPO]2.0.CO;2
Maningas, M. B. B., Kondo, H., & Hirono, I. (2013). Molecular mechanisms of the shrimp clotting system. Fish & Shellfish Immunology, 34(4), 968-972. https://doi.org/10.1016/j.fsi.2012.09.018
Mansaray, M., Hayford, A., Xiaojun, J., Lin, Z. & Xinhua, Y. (2018). Economic analysis of white-leg shrimp (Penaeus vannamei) production case study: Rudong County of Nantong City, Jiangsu Province, China. Asian Journal of Agricultural Extension, Economics & Sociology, 26(4),1-13. https://doi.org/10.9734/AJAEES/2018/42919
Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Méndez, J. L., Guerrero-Monroy, I., del Vivar, A. R., & Félix-Gastelum, R. (2012). Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture, 366-367, 76-84. https://doi.org/10.1016/j.aquaculture.2012.09.003
McGraw, W. J., Davis, D. A., Teichert-Coddington, D. & Rouse, D. B. (2002). Acclimation of Litopenaeus vannamei postlarvae to low salinity: Influence of age, salinity endpoint, and rate of salinity reduction. Journal of the World Aquaculture Society, 33(1), 78-84. https://doi.org/10.1111/j.1749-7345.2002.tb00481.x
Nickerson, K. W., & Van Holde, K. E. (1971). A comparison of molluscan and arthropod hemocyanin-I. Circular dichroism and absorption spectra. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 39(4), 855-872. https://doi.org/10.1016/0305-0491(71)90109-X
Orellana, F., Cadena, E. & Molina, C. (2000). Alimentación de camarones en relación a la actividad enzimática como una respuesta natural al ritmo circadiano y ciclo de muda. http://www.dspace.espol.edu.ec/handle/123456789/8784
Pascual, C., Gaxiola, G., & Rosas, C. (2003). Blood metabolites and hemocyanin of the white shrimp, Litopenaeus vannamei: The effect of culture conditions and a comparison with other crustacean species. Marine Biology, 142, 735-745. https://doi.org/10.1007/s00227-002-0995-2
Pascual, C., Sánchez, A., Zenteno, E., Cuzon, G., Gabriela, G., Brito, R., Gelabert, R., Hidalgo, E., & Rosas, C. (2006). Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture, 251(2-4), 416-429. https://doi.org/10.1016/j.aquaculture.2005.06.001
Perazzolo, L., Gargioni, R., Ogliari, P., & Barracco, M. (2002). Evaluation of some hemato-immunological parameters in shrimp Farfantepenaeus paulensis submitted to environmental and physiological stress. Aquaculture, 214(1-4), 19-33. https://doi.org/10.1016/S0044-8486(02)00137-0
Qiu, J., Wang, W. N., Wang, L., Liu, Y. F. & Wang, A. L. (2011). Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 154(1), 36-41. https://doi.org/10.1016/j.cbpc.2011.02.007
Robertson, L., Bray, W., Leung-Trujillo, J., & Lawrence, A. (1987). Practical Molt Staging of Penaeus setiferus and Penaeus stylirostris. Journal of the World Aquaculture Society, 18(3), 180-185. https://doi.org/10.1111/j.1749-7345.1987.tb00437.x
Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J. & Boyd, C. E. (2010). Shrimp culture in inland low salinity waters. Reviews in Aquaculture, 2(4), 191-208. https://doi.org/10.1111/j.1753-5131.2010.01036.x
Song, Y. L., Yu, C. I., Lien, T. W., Huang, C. C. & Lin, M. N. (2003). Haemolymph parameters of Pacific white shrimp, Litopenaeus vannamei infected with Taura syndrome virus. Fish & Shellfish Immunology, 14(4), 317-331. https://doi.org/10.1006/fsim.2002.0440
Thabet, R., Ayadi, H., Koken, M., & Leignel, V. (2017). Homeostatic responses of crustaceans to salinity changes. Hydrobiologia, 799,1-20. https://doi.org/10.1007/s10750-017-3232-1
Valencia-Castañeda, G., Frías-Espericueta, M. G., Vanegas-Pérez, R. C., Chávez-Sánchez, M. C., & Páez-Osuna, F. (2020). Physiological changes in the hemolymph of juvenile shrimp Litopenaeus vannamei to sublethal nitrite and nitrate stress in low-salinity waters. Environmental Toxicology and Pharmacology, 80, Article 103472. https://doi.org/10.1016/j.etap.2020.103472
Valenzuela Quiñonez, W., Rodríguez Quiroz, G., & Esparza Leal, H. M. (2010). Cultivo intensivo de camarón blanco Litopenaeus vannamei (Boone) en agua de pozo de baja salinidad como alternativa acuícola para zonas de alta marginación. Ra Ximhai, 6(001), Article 001.
Xian, J.-A., Zhang, X.-X., Wang, D.-M., Li, J.-T., Zheng, P.-H. & Lu, Y.-P. (2017). Various cellular responses of different shrimp haemocyte subpopulations to lipopolysaccharide stimulation. Fish & Shellfish Immunology, 69, 195-199. https://doi.org/10.1016/j.fsi.2017.08.025
Yoganandhan, K., Thirupathi, S. & Sahul Hameed, A. S. (2003). Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221(1-4), 1-11. https://doi.org/10.1016/S0044-8486(02)00220-X
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional